首页 | 官方网站   微博 | 高级检索  
     


Microsecond timescale MD simulations at the transition state of PmHMGR predict remote allosteric residues
Authors:Taylor R Quinn  Calvin N Steussy  Brandon E Haines  Jinping Lei  Wei Wang  Fu Kit Sheong  Cynthia V Stauffacher  Xuhui Huang  Per-Ola Norrby  Paul Helquist  Olaf Wiest
Abstract:Understanding the mechanisms of enzymatic catalysis requires a detailed understanding of the complex interplay of structure and dynamics of large systems that is a challenge for both experimental and computational approaches. More importantly, the computational demands of QM/MM simulations mean that the dynamics of the reaction can only be considered on a timescale of nanoseconds even though the conformational changes needed to reach the catalytically active state happen on a much slower timescale. Here we demonstrate an alternative approach that uses transition state force fields (TSFFs) derived by the quantum-guided molecular mechanics (Q2MM) method that provides a consistent treatment of the entire system at the classical molecular mechanics level and allows simulations at the microsecond timescale. Application of this approach to the second hydride transfer transition state of HMG-CoA reductase from Pseudomonas mevalonii (PmHMGR) identified three remote residues, R396, E399 and L407, (15–27 Å away from the active site) that have a remote dynamic effect on enzyme activity. The predictions were subsequently validated experimentally via site-directed mutagenesis. These results show that microsecond timescale MD simulations of transition states are possible and can predict rather than just rationalize remote allosteric residues.

Transition state force fields enable MD simulations at the transition state of HMGCoA reductase that sample the transition state ensemble on the μs timescale to identify remote residues that affect the reaction rate.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号