首页 | 官方网站   微博 | 高级检索  
     


Efficient workspace generation for binary manipulators with many actuators
Authors:Imme Ebert-uphoff  Gregory S Chirikjian
Abstract:Binary actuators have only two discrete states, both of which are stable without feedback. As a result, manipulators with binary actuators have a finite number of states. Major benefits of binary actuation are that extensive feedback control is not required, task repeatability can be very high, and two-state actuators are generally very inexpensive, thus resulting in low-cost robotic mechanisms. Determining the workspace of a binary manipulator is of great practical importance for a variety of applications. For instance, a representation of the workspace is essential for trajectory tracking, motion planning, and the optimal design of binary manipulators. Given that the number of configurations attainable by binary manipulators grows exponentially in the number of actuated degrees of freedom, 0(2), brute force representation of binary manipulator workspaces is not feasible in the highly actuated case. This article describes an algorithm that performs recursive calculations starting at the end-effector and terminating at the base. The implementation of these recursive calculations is based on the macroscopically serial structure and the discrete nature of the manipulator. As a result, the method is capable of approximating the workspace in linear time, O(n), where the slope depends on the acceptable error. © 1995 John Wiley b Sons, Inc.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号