首页 | 官方网站   微博 | 高级检索  
     


Photoinhibition of photosynthesis in intact kiwifruit (Actinidia deliciosa) leaves: Effect of temperature
Authors:D H Greer  W A Laing  T Kipnis
Affiliation:(1) Plant Physiology Division, DSIR, Private Bag, Palmerston North, New Zealand;(2) Present address: Department of Forage Crops and Range Management, Volcani Centre, P.O. Box 6, 50250 Bet-Dagan, Israel
Abstract:Photoinhibition of photosynthesis was induced in attached leaves of kiwifruit grown in natural light not exceeding a photon flux density (PFD) of 300 mgrmol·m-2·s-1, by exposing them to a PFD of 1500 mgrmol·m-2·s-1. The temperature was held constant, between 5 and 35° C, during the exposure to high light. The kinetics of photoinhibition were measured by chlorophyll fluorescence at 77K and the photon yield of photosynthetic O2 evolution. Photoinhibition occurred at all temperatures but was greatest at low temperatures. Photoinhibition followed pseudo first-order kinetics, as determined by the variable fluorescence (F v) and photon yield, with the long-term steady-state of photoinhibition strongly dependent on temperature wheareas the observed rate constant was only weakly temperature-dependent. Temperature had little effect on the decrease in the maximum fluorescence (F m) but the increase in the instantaneous fluorescence (F o) was significantly affected by low temperatures in particular. These changes in fluorescence indicate that kiwifruit leaves have some capacity to dissipate excessive excitation energy by increasing the rate constant for non-radiative (thermal) energy dissipation although temperature apparently had little effect on this. Direct photoinhibitory damage to the photosystem II reaction centres was evident by the increases in F o and extreme, irreversible damage occurred at the lower temperatures. This indicates that kiwifruit leaves were most susceptible to photoinhibition at low temperatures because direct damage to the reaction centres was greatest at these temperatures. The results also imply that mechanisms to dissipate excess energy were inadequate to afford any protection from photoinhibition over a wide temperature range in these shade-grown leaves.Abbreviations and symbols epsi fluorescence yield correction coefficient - F o, F m, F v instantaneous, maximum, variable fluorescence - K D, K F, K P, K T rate constants for non-radiative energy dissipation, fluorescence, photochemistry, energy transfer to photosystem I - PFD photon flux density - PSI, II photosystem I, II - phgr i photon yield of photosynthesis (incident light)
Keywords:Actinidia  Chlorophyll fluorescence  Light and photoinhibition  Photoinhibition of photosynthesis  Temperature and photoinhibition
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号