首页 | 官方网站   微博 | 高级检索  
     


Multistage-batch bipolar membrane electrodialysis for base production from high-salinity wastewater
Authors:Arif Hussain  Haiyang Yan  Noor Ul Afsar  Chenxiao Jiang  Yaoming Wang  Tongwen Xu
Affiliation:Department of Applied Chemistry, Anhui Provincial Engineering Laboratory of Functional Membrane Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
Abstract:Bipolar membrane electrodialysis (BMED) is considered a state-of-the-art technology for the conversion of salts into acids and bases. However, the low concentration of base generated from a traditional BMED process may limit the viability of this technology for a large-scale application. Herein, we report an especially designed multistage-batch (two/three-stage-batch) BMED process to increase the base concentration by adjusting different volume ratios in the acid (Vacid), base (Vbase), and salt compartments (Vsalt). The findings indicated that performance of the two-stage-batch with a volume ratio of Vacid:Vbase:Vsalt = 1:1:5 was superior in comparison to the three-stage-batch with a volume ratio of Vacid:Vbase:Vsalt = 1:1:2. Besides, the base concentration could be further increased by exchanging the acid produced in the acid compartment with fresh water in the second stage-batch process. With the two-stage-batch BMED, the maximum concentration of the base can be obtained up to 3.40 mol∙L–1, which was higher than the most reported base production by BMED. The low energy consumption and high current efficiency further authenticate that the designed process is reliable, cost-effective, and more productive to convert saline water into valuable industrial commodities.
Keywords:bipolar membrane electrodialysis  multistage-batch  base production  high-salinity wastewater  
点击此处可从《Frontiers of Chemical Science and Engineering》浏览原始摘要信息
点击此处可从《Frontiers of Chemical Science and Engineering》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号