首页 | 官方网站   微博 | 高级检索  
     

基于节点相似性和网络嵌入的复杂网络社区发现算法
引用本文:杨旭华,王磊,叶蕾,张端,周艳波,龙海霞. 基于节点相似性和网络嵌入的复杂网络社区发现算法[J]. 计算机科学, 2022, 49(3): 121-128. DOI: 10.11896/jsjkx.210200009
作者姓名:杨旭华  王磊  叶蕾  张端  周艳波  龙海霞
作者单位:浙江工业大学计算机科学与技术学院 杭州 310023
摘    要:社区发现算法对分析复杂网络的拓扑和层次结构、预测复杂网络的演化趋势等具有十分重要的意义.传统的社区发现算法划分精度不高,忽略了网络嵌入的重要性.针对这样的问题,提出了基于节点相似性和网络嵌入Node2Vec方法的无参数社区发现算法.首先,使用网络嵌入Node2Vec方法将网络节点映射成欧氏空间中低维向量表示的数据点,计...

关 键 词:无参数社区发现  节点相似性  偏好网络  网络嵌入  K-Means聚类

Complex Network Community Detection Algorithm Based on Node Similarity and Network Embedding
YANG Xu-hua,WANG Lei,YE Lei,ZHANG Duan,ZHOU Yan-bo,LONG Hai-xia. Complex Network Community Detection Algorithm Based on Node Similarity and Network Embedding[J]. Computer Science, 2022, 49(3): 121-128. DOI: 10.11896/jsjkx.210200009
Authors:YANG Xu-hua  WANG Lei  YE Lei  ZHANG Duan  ZHOU Yan-bo  LONG Hai-xia
Affiliation:(College of Computer Science and Technology,Zhejiang University of Technology,Hangzhou 310023,China)
Abstract:The community detection algorithm is very important for analyzing the topology and hierarchical structure of complex networks and predicting the evolution trend of complex networks.Traditional community detection algorithm does not have high accuracy and ignores the importance of network embedding.Aiming at such problems,a parameter-free community detection algorithm based on node similarity and network embedding Node2Vec method is proposed.First,we use the network embedding Node2Vec method to map network nodes into data points represented by low-dimensional vectors in Euclidean space,calculate the cosine similarity between the data points represented by the low-dimensional vector,construct a preference network according to the maximum similarity between the corresponding nodes,obtain the initial community detection,and use the maximum degree node of each initial community as a candidate node.Then we find the central node among the candidate nodes according to the average degree of the network and the average shortest path.Finally,the data points and their numbers corresponding to the central node are used as the initial centroid and cluster number,and the data represented by the low-dimensional vector are calculated by K-Means algorithm.The points are clustered,and the corresponding network nodes are divided into communities.This algorithm is a method of community division without parameters,which can independently extract parameters from the network without setting different hyper-parameters according to different networks,so that it can automatically and quickly identify the community structure of complex networks.In 8 real networks and artificial networks above,by comparing with other 5 well-known community discovery algorithms,numerical simulation experiments show that the proposed algorithm has good community discovery effect.
Keywords:Parameter-free community detection  Node similarity  Preference network  Network embedding  K-Means clustering
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号