首页 | 官方网站   微博 | 高级检索  
     


Effect of particle dimension on biocompatibility of carbon nanomaterials
Authors:Christin Grabinski  Saber Hussain  Khalid Lafdi  John Schlager
Affiliation:a University of Dayton, 300 College Park, Dayton, OH 45469-0168, USA
b Air Force Research Laboratory, AFRL/HEPB, 2729 R Street, Wright Patterson AFB, OH 45433, USA
Abstract:With various emerging applications ranging from medicine to materials and electronics, the risk of exposure to nanomaterials is rapidly increasing. Several routes of exposure to nanomaterials exist; the most important being dermal contact and inhalation. In this dermal toxicity study, the cellular effects of carbon-based materials with diameters ranging from micro- to nano-dimension were investigated using mouse keratinocytes (HEL-30). The carbon materials tested included carbon fibers (CF; 10 μm diameter), carbon nanofibers (CNF; 100 nm diameter), multi-walled carbon nanotubes (MWCNT; 10 nm diameter), and single-walled carbon nanotubes (SWCNT; 1 nm diameter). CF and CNF did not significantly affect cell viability; however, MWCNT and SWCNT reduced cell viability in a time-dependent manner up to 48 h, with full recovery of mitochondrial function by the 72 h time point. After a 24 h exposure, cells exposed to MWCNT produced up to 3-fold higher increase in reactive oxygen species than those exposed to SWCNT. The results of this study suggest that high-aspect ratio carbon material toxicity is dependent on dimension and composition.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号