首页 | 官方网站   微博 | 高级检索  
     


Influence of pyrolytic temperature on the properties of ZnO films optimized for H2 sensing application
Authors:K Vijayalakshmi  D Gopalakrishna
Affiliation:1. PG and Research Department of Physics, Bishop Heber College, Tiruchirapalli, India
Abstract:In this work, we report the influence of pyrolytic temperature on the properties of ZnO films deposited by a novel spray pyrolysis deposition route. XRD results revealed an improvement in crystal quality of the films with increase in growth temperature. The optical measurements of the films show a maximum transmittance of ~85 % and the band gap of ~3.5 eV. Photoluminescence spectra revealed that the UV emission peaks at 385 nm is improved with increase in growth temperature upto 300 °C, which corresponds to the increase of optical quality and decrease of Zn interstitial defect in the films. Gold ohmic contacts were evaporated on the optimized ZnO film prepared at the substrate temperature of 300 °C, and response of the film to different concentrations of hydrogen (150–500 ppm) at room temperature was investigated. The ZnO sensor showed significant sensitivity to hydrogen for concentration as low as 150 ppm at room temperature, and the sensor response was observed to increase with increase in hydrogen concentration. The increased sensitivity of the film was attributed to the large roughness of the film revealed from AFM analysis. The results ensure the application of our novel sensor, to detect H2 at low concentration and at room temperature.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号