首页 | 官方网站   微博 | 高级检索  
     


Scattering of a transversely confined Neumann beam by a spherical particle
Authors:Lock James A
Affiliation:Physics Department, Cleveland State University, Cleveland, Ohio 44115, USA. j.lock@csuohio.edu
Abstract:Various properties of an electromagnetic wave whose spherical multipole expansion contains only Riccati-Neumann functions are examined. In particular, the novel behavior of the beam phase during diffractive spreading is discussed. When a Neumann beam is scattered by a spherical particle, the diffraction and external reflection portions of the scattering amplitude constructively interfere for large partial waves. As a result, a set of rapidly decreasing beam shape coefficients is required to cut off the partial wave sum in the scattering amplitudes. Because of its strong singularity at the origin, a Neumann beam can be produced by a point source of radiation at the center of a spherical cavity in a high conductivity metal, and Neumann beam scattering by a spherical particle can occur for certain partial waves if the sphere is placed at the center of the cavity as well.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号