首页 | 官方网站   微博 | 高级检索  
     


Blue‐Light‐Emitting Oligoquinolines: Synthesis,Properties, and High‐Efficiency Blue‐Light‐Emitting Diodes
Authors:C?J Tonzola  A?P Kulkarni  A?P Gifford  W Kaminsky  S?A Jenekhe
Affiliation:1. Department of Chemistry, University of Washington, Seattle, WA 98195‐1700 (USA);2. Department of Chemical Engineering, University of Washington, Seattle, WA 98195‐1750 (USA)
Abstract:The synthesis, photophysics, cyclic voltammetry, and highly efficient blue electroluminescence of a series of four new n‐type conjugated oligomers, 6,6′‐bis(2,4‐diphenylquinoline) (B1PPQ), 6,6′‐bis(2‐(4‐tert‐butylphenyl)‐4‐phenylquinoline) (BtBPQ), 6,6′‐bis(2‐p‐biphenyl)‐4‐phenylquinoline) (B2PPQ), and 6,6′‐bis((3,5‐diphenylbenzene)‐4‐phenylquinoline) (BDBPQ) is reported. The oligoquinolines have high glass‐transition temperatures (Tg ≥ 133 °C), reversible electrochemical reduction, and high electron affinities (2.68–2.81 eV). They emit blue photoluminescence with 0.73–0.94 quantum yields and 1.06–1.42 ns lifetimes in chloroform solutions. High‐performance organic light‐emitting diodes (OLEDs) with excellent blue chromaticity coordinates are achieved from all the oligoquinolines. OLEDs based on B2PPQ as the blue emitter give the best performance with a high brightness (19 740 cd m–2 at 8.0 V), high efficiency (7.12 cd A–1 and 6.56 % external quantum efficiency at 1175 cd m–2), and excellent blue color purity as judged by the Commission Internationale de L'Eclairage (CIE) coordinates (x = 0.15,y = 0.16). These results represent the best efficiency of blue OLEDs from neat fluorescent organic emitters reported to date. These results demonstrate the potential of oligoquinolines as emitters and electron‐transport materials for developing high‐performance blue OLEDs.
Keywords:Electroluminescence  Fluorescence  Light‐emitting diodes  organic  Oligomers
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号