首页 | 官方网站   微博 | 高级检索  
     


Thermal efficiency characteristics of hydrogen internal combustion engine
Authors:SUN Bai-gang  XIANG Qing-hua and LIU Fu-shui
Affiliation:School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China;School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
Abstract:To study the economic advantages of hydrogen internal combustion engine, an experimental study was carried out using a 2.0.L port fuel-injected (PFI) hydrogen internal combustion engine. Influences of fuel-air equivalence ratio Φ, speed, and ignition advance angle on heat efficiency were determined. Test results showed that indicated thermal efficiency (ITE) firstly increased with fuel-air equivalence ratio, achieved the maximum value of 40.4% (Φ=0.3), and then decreased when Φ was more than 0.3. ITE increased as speed rises. Mechanical efficiency increased as fuel-air equivalence ratio increased, whereas mechanical efficiency decreased as speed increased, with maximum mechanical efficiency reaching 90%. Brake thermal efficiency (BTE) was influenced by ITE and mechanical efficiency, at the maximum value of 35% (Φ=0.5, 2.000.r/min). The optimal ignition advance angle of each condition resulting in the maximum BTE was also studied. With increasing fuel-air equivalence ratio, the optimal ignition angle became closer to the top dead center (TDC). The test results and the conclusions exhibited a guiding role on hydrogen internal combustion engine optimization.
Keywords:hydrogen internal combustion engine  thermal efficiency  fuel-air equivalence ratio  speed  ignition advance angle
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京理工大学学报(英文版)》浏览原始摘要信息
点击此处可从《北京理工大学学报(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号