首页 | 官方网站   微博 | 高级检索  
     

高强韧Ti-3Al-5Mo-4Cr-2Zr-1Fe合金低周疲劳性能研究
引用本文:张航,孙洋洋,Igor. V. Alexandrov,方志刚,易承杰,董月成,常辉,周廉.高强韧Ti-3Al-5Mo-4Cr-2Zr-1Fe合金低周疲劳性能研究[J].稀有金属材料与工程,2021,50(2):588-594.
作者姓名:张航  孙洋洋  Igor. V. Alexandrov  方志刚  易承杰  董月成  常辉  周廉
作者单位:南京工业大学材料科学与工程学院/新材料研究院,南京工业大学材料科学与工程学院/新材料研究院,俄罗斯乌法国立航空技术大学,中国人民解放军92228部队,南京工业大学2011学院,南京工业大学材料科学与工程学院/新材料研究院,南京工业大学材料科学与工程学院/新材料研究院,南京工业大学材料科学与工程学院/新材料研究院
基金项目:国家自然科学基金重点项目(No.51931008);江苏省重点研发计划((产业前瞻与关键核心技术--竞争项目)(No.BE2019119)
摘    要:通过室温下应变控制疲劳试验研究了高强韧Ti-3Al-5Mo-4Cr-2Zr-1Fe合金的低周疲劳性能。结果表明:在高应变幅值下(Δεt/2=1.0%,1.2%,1.4%,1.6%),合金的循环应力响应表现为初始循环软化,而后趋于循环稳定;在低应变幅值下(Δεt/2=0.6%,0.8%),合金的循环应力响应表现为循环饱和特征。断口形貌观察发现:应变幅值为0.6%时,疲劳裂纹源只有一处,在断口表面分布有大量细小的二次裂纹。当应变幅增加到1.6%时,组织中发现多处疲劳裂纹源,二次裂纹的数量明显减少,但长度和宽度明显增加。透射电镜结果表明:在低应变幅值下(Δεt/2=0.6%),在αp/β界面处出现大量的位错堆积,在此处易产生应力集中导致微裂纹形核。而在高应变幅值下(Δεt/2=1.6%),在αp相中有明显的变形不均匀性,在αp相内出现大量的位错缠结和位错碎片,并且在αs相中出现一些位错塞积,但在β基体中没有明显的位错堆积情况。由于长条αp相的存在,能够提升α相和β相变形的相容性,延缓疲劳裂纹形核和扩展,因此使Ti-35421合金有着优异的低周疲劳性能。

关 键 词:低成本钛合金  低周疲劳  循环软化  循环稳定
收稿时间:2020/7/29 0:00:00
修稿时间:2020/9/18 0:00:00

Study on Low Cycle Fatigue Behavior of Ti-3Al-5Mo-4Cr-2Zr-1Fe Alloy with High Strength and Toughness
Zhang Hang,Sun Yangyang,Igor. V. Alexandrov,Fang Zhigang,Yi Chengjie,Dong Yuecheng,Chang Hui and Zhou Lian.Study on Low Cycle Fatigue Behavior of Ti-3Al-5Mo-4Cr-2Zr-1Fe Alloy with High Strength and Toughness[J].Rare Metal Materials and Engineering,2021,50(2):588-594.
Authors:Zhang Hang  Sun Yangyang  Igor V Alexandrov  Fang Zhigang  Yi Chengjie  Dong Yuecheng  Chang Hui and Zhou Lian
Affiliation:Nanjing Tech university,,,,,,,
Abstract:Low cycle fatigue(LCF) behavior of Ti-3 Al-5 Mo-4 Cr-2 Zr-1 Fe(Ti-35421) alloy with bimodal microstructure consisting of lath α(αp) and βtrans was investigated by strain-controlled mode at room temperature. Results indicate that cyclic stress amplitudes of the Ti-35421 alloy with bimodal microstructure show cyclic softening at first, then reach to cyclic stability at high strain amplitude(Δεt/2=1.0%, 1.2%, 1.4%, 1.6%). However, the cyclic stress response characterizes cyclic saturation at low strain amplitudes(Δεt/2=0.6%, 0.8%). Only one fatigue crack source is found by fracture morphology observation when Δεt/2=0.6%, while a large number of small secondary cracks occur on the surface. On the contrary, multiple fatigue crack sources generate when the strain amplitude increases to 1.6%. The number of secondary cracks reduces, but the length and width of the secondary cracks increase significantly. TEM results indicate that a large number of dislocations generate at the αp/βtrans interface at the low strain amplitude(Δεt/2=0.6%), which leads to micro-crack nucleation due to the stress concentration. Meanwhile, at high strain amplitude(Δεt/2=1.6%), deformation inhomogeneity phenomena occur in the αp phase, a large number of dislocation tangles and dislocation debris form in the αp phase, and some dislocation pile-ups form in the αs phase instead of β matrix. Due to the elongated αp phase, it can improve the compatibility of alloy α phase and β phase deformation, and delay crack nucleation and propagation. Therefore, Ti-35421 alloy has excellent low cycle fatigue performance.
Keywords:Low-cost titanium  Low cycle fatigue  cyclic softening  cyclic stability
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《稀有金属材料与工程》浏览原始摘要信息
点击此处可从《稀有金属材料与工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号