首页 | 官方网站   微博 | 高级检索  
     


Sustainable fuel cell integrated membrane desalination systems
Authors:Rajindar Singh  
Affiliation:

aSiemens Water Technologies Corp., Colorado Springs, CO, USA

Abstract:According to the United Nations, between two and seven billion people will face water shortages by the year 2050. Further, it is estimated that the amount of water available per person will shrink by a third during the next two decades. Inadequate supply of good-quality water coupled with higher water demand due to rapid population growth and industrialisation in developing countries are among the major reasons for the worsening water situation. Current shortages of potable water around the world and looming water scarcity especially in the developing countries is the driving force behind the implementation of membrane technologies for seawater and brackish water desalination. Typical energy consumption in seawater reverse osmosis (RO) plants operating at 40–45% product water recovery and with energy recovery from the high pressure reject stream currently is about 3–4 kWh/m3. The near-term goal of the industry is to reduce energy consumption to less than 2 kWh/m3 by using a combination of energy efficient RO pumps, more efficient energy recovery devices, high performance low energy RO membranes, hybrid membrane systems, advanced pretreatment technologies and alternate energy integrated membrane systems. The beneficial aspects of using alternate energy systems such as on-site distributed fuel cell systems integrated with membrane desalination units in remote locations are discussed.
Keywords:RO  Fuel cells  Desalination  Hybrid  Membrane  UN
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号