首页 | 官方网站   微博 | 高级检索  
     


Adaptive output-feedback stabilization of non-local hyperbolic PDEs
Authors:Pauline Bernard  Miroslav Krstic
Affiliation:1. MINES ParisTech, 60 Boulevard Saint-Michel, 75006 Paris, France;2. Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093-0411, USA
Abstract:We address the problem of adaptive output-feedback stabilization of general first-order hyperbolic partial integro-differential equations (PIDE). Such systems are also referred to as PDEs with non-local (in space) terms. We apply control at one boundary, take measurements on the other boundary, and allow the system’s functional coefficients to be unknown. To deal with the absence of both full-state measurement and parameter knowledge, we introduce a pre-transformation (which happens to be based on backstepping) of the system into an observer canonical form. In that form, the problem of adaptive observer design becomes tractable. Both the parameter estimator and the control law employ only the input and output signals (and their histories over one unit of time). Prior to presenting the adaptive design, we present the non-adaptive/baseline controller, which is novel in its own right and facilitates the understanding of the more complex, adaptive system. The parameter estimator is of the gradient type, based on a parametric model in the form of an integral equation relating delayed values of the input and output. For the closed-loop system we establish boundedness of all signals, pointwise in space and time, and convergence of the PDE state to zero pointwise in space. We illustrate our result with a simulation.
Keywords:Distributed parameter systems  Boundary control  Hyperbolic systems  Adaptive control
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号