首页 | 官方网站   微博 | 高级检索  
     


Performance and cost trade-off in Tracking Area reconfiguration: A Pareto-optimization approach
Authors:Sara Modarres RazaviAuthor Vitae  Di YuanAuthor Vitae  Fredrik GunnarssonAuthor VitaeJohan MoeAuthor Vitae
Affiliation:a Department of Science and Technology, Linköping University, Sweden
b Ericsson Research, Ericsson AB, Sweden
Abstract:Tracking Area (TA) design is one of the key tasks in location management of Long Term Evolution (LTE) networks. TA enables to trace and page User Equipments (UEs). As UEs distribution and mobility patterns change over time, TA design may have to undergo revisions. For revising the TA design, the cells to be reconfigured typically have to be temporary torn down. Consequently, this will result in service interruption and “cost”. There is always a trade-off between the performance in terms of the overall signaling overhead of the network and the reconfiguration cost. In this paper, we model this trade-off as a bi-objective optimization problem to which the solutions are characterized by Pareto-optimality. Solving the problem delivers a host of potential trade-offs among which the selection can be based on the preferences of a decision maker. An integer programming model has been developed and applied to the problem. Solving the integer programming model for various cost budget levels leads to an exact scheme for Pareto-optimization. In order to deliver Pareto-optimal solutions for large networks in one single run, a Genetic Algorithm (GA) embedded with Local Search (LS) is applied. Unlike many commonly adopted approaches in multi-objective optimization, our algorithm does not consider any weighted combination of the objectives. Comprehensive numerical results are presented in this study, using large-scale realistic or real-life network scenarios. The experiments demonstrate the effectiveness of the proposed approach.
Keywords:Bi-criteria optimization  Reconfiguration  Signaling overhead  Tracking Area
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号