首页 | 官方网站   微博 | 高级检索  
     


Artificial Synapse Based on Oxygen Vacancy Migration in Ferroelectric-Like C-Axis-Aligned Crystalline InGaSnO Semiconductor Thin-Film Transistors for Highly Integrated Neuromorphic Electronics
Authors:Taebin Lim  Suhui Lee  Jiseob Lee  HyungJin Choi  Byunglib Jung  SeungHyub Baek  Jin Jang
Affiliation:1. Advanced Display Research Center (ADRC), Department of Information Display, Kyung Hee University, Seoul, 02447 South Korea;2. Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul, 02792 South Korea
Abstract:Artificial synapses are a key component of neuromorphic computing systems. To achieve high-performance neuromorphic computing ability, a huge number of artificial synapses should be integrated because the human brain has a huge number of synapses (≈1015). In this study, a coplanar synaptic, thin-film transistor (TFT) made of c-axis-aligned crystalline indium gallium tin oxide (CAAC–IGTO) is developed. The electrical characteristics of the biological synapses such as inhibitory postsynaptic current (IPSC), paired-pulse depression (PPD), short-term plasticity (STP), and long-term plasticity at VDS = 0.1 V, are demonstrated. The measured synaptic behavior can be explained by the migration of positively charged oxygen vacancies (Vo+/Vo++) in the CAAC–IGTO layer. The mechanism of implementing synaptic behavior is completely new, compared to previous reports using electrolytes or ferroelectric gate insulators. The advantage of this device is to use conventional gate insulators such as SiO2 for synaptic behavior. Previous studies use chitosan, Ta2O3, SiO2 nanoparticles , Gd2O3, and HfZrOx for gate insulators, which cannot be used for high integration of synaptic devices. The metal–oxide TFTs, widely used in the display industry, can be applied to the synaptic transistors. Therefore, CAAC–IGTO synaptic TFT can be a good candidate for application as an artificial synapse for highly integrated neuromorphic chips.
Keywords:c-axis-aligned crystals  ferroelectric-like semiconductors  indium gallium tin oxide  neuromorphic systems  synaptic transistors  thin-film transistors
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号