首页 | 官方网站   微博 | 高级检索  
     


Melting attack of solid plates by a high temperature liquid jet — effect of crust formation
Authors:M Saito  K Sato  A Furutani  M Isozaki  S Imahori  Y Hattori
Abstract:When a molten UO2 jet impinges on a steel structure in a reactor vessel during a severe accident, the erosion rate of the steel by the molten UO2 jet is expected to be limited considerably by a UO2 crust layer forming on a molten steel substrate at the jet/steel plate interface. A series of simulation experiments was performed to study the melting behavior of solid plates by high temperature liquid jets and the effects of crust forming at jet/structure interface. In the first series of experiments, salt (NaCl) was selected as the jet material and tin (Sn) as the solid structure. The experiments were conducted with varying the jet diameter (10 30 mm) and jet temperature (900 1100°C). The jets were accelerated to a range of 3 5 m/s at the nozzle outlet by gravitational force and impinged perpendicularly to the solid plate underneath. Furthermore, to check the effects of the thermo-physical properties on the erosion behaviors, preliminary experiments were performed by using a molten Al2O3 jet ( 2200°C) impinging on stainless steel plate at room temperature. The erosion rates obtained in the present experiments were far less than the values predicted by an analytical solution that neglects the existence of a crust layer and its thermal effects. With the inclusion of the crust behavior in the model, the experimental results were predicted fairly well. From the present experiments, a Nusselt number of the turbulent heat transfer, which takes into account simultaneous melting and freezing in the impingement region of a molten jet, is correlated by a Reynolds number and a Prandtl number as follows: Num = 0.0033 Re---Pr.In conclusion, the existence of a crust layer plays an important role in the erosion process of a solid plate by the molten fuel jet with high melting point as in a reactor situation.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号