首页 | 官方网站   微博 | 高级检索  
     


The antioxidant melatonin reduces cortical neuronal death after intrastriatal injection of kainate in the rat
Authors:S T Chen  J I Chuang
Affiliation:(1) Department of Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China, TW;(2) Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China e-mail: jichuang@mail.ncku.edu.tw Tel.: 886-6-2353535 ext. 5460, Fax: 886-6-2362780, TW
Abstract: The anti-excitotoxic efficacy of the pineal hormone melatonin was investigated in kainate-injured brains of rats. Kainate (a glutamate-receptor agonist, 2.5 nmol in 1 μl) was directly injected to unilateral striatum. Melatonin (10 mg/kg) was administrated intraperitoneally 1 h before and 1, 3, and 5 h after intrastriatal kainate injection in adult Sprague-Dawley rats. Three days after kainate injection, a significant neuronal damage was found, as determined by Nissl staining and the TUNEL method, not only in the injected striatum, but also in the ipsilateral neighboring cortex. The kainate-induced cortical apoptotic neuronal death was significantly attenuated by treatment with melatonin compared with the vehicle control group. However, no detectable changes were observed in the contralateral side of the brain in either vehicle- or melatonin-treated rats. Moreover, the biochemical results indicated that kainate can indeed induce oxidative stress, such as a decrease in the content of total glutathione (GSH), oxidized glutathione (GSSG), and an increase in the ratio of GSSG/GSH in the striatum and cortex compared with the contralateral brain regions. In the kainate-injected striatum, melatonin did not reduce the oxidative stress, but in the neighborhood of injected area-cortex, kainate-induced oxidative stress was significantly reduced by melatonin. Enhancement of glutathione-peroxidase activity was induced by intrastriatal kainate injection, not only in the cortical area of control and melatonin-treated rats, but also in striatum of control rats. However, a large elevation was found in the melatonin-treated cortex. Taking the morphological and biochemical data together, the present results suggest that melatonin functions as an antioxidant by upregulating the glutathione antioxidative defense system, thereby reducing neuronal death caused by excitotoxicity and preventing the kainate-induced damage from spreading to adjacent brain regions. Received: 16 December 1997 / Accepted: 30 July 1998
Keywords:  Melatonin  Kainate  Glutathione  Apoptosis  Excitotoxicity
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号