首页 | 官方网站   微博 | 高级检索  
     


Predicting damage and failure under low cycle fatigue in a 9Cr steel
Authors:F BIGLARI  P LOMBARDI  S BUDANO  C M DAVIES  K M NIKBIN
Affiliation:1. Department of Mechanical Engineering, Amirkabir University of technology, Hafez Avenue, Tehran, Iran;2. CSM, Centro Sviluppo Materiali, S.p.A, Via di Castel Romano, 100–00128 Rome, Italy
Abstract:Experimental data have been generated and finite element models developed to examine the low cycle fatigue (LCF) life of a 9Cr (FB2) steel. A novel approach, employing a local ductile damage initiation and failure model, using the hysteresis total stress–strain energy concept combined with element removal, has been employed to predict the failure in the experimental tests. The 9Cr steel was found to exhibit both cyclic softening and nonlinear kinematic hardening behaviour. The finite element analysis of the material's cyclic loading was based on a nonlinear kinematic hardening criterion using the Chaboche constitutive equations. The models’ parameters were calibrated using the experimental test data available. The cyclic softening model in conjunction with the progressive damage evolution model successfully predicted the deformation behaviour and failure times of the experimental tests for the 9Cr steels performed.
Keywords:Low cycle fatigue  finite element analysis  cyclic softening  hysteresis stress‐strain energy  experimental fatigue test  damage initiation and evolution
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号