首页 | 官方网站   微博 | 高级检索  
     


Linear and non-linear pseudocapacitances with or without diffusion control
Affiliation:Department of Chemical and Environmental Engineering, and Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
Abstract:Pseudocapacitance is an important reversible charge storage mechanism in many electrode materials. Although the concept was first proposed in early 1960s, it has been more widely studied following the observation of rectangular cyclic voltammograms (CVs) when testing some transition metal oxides and electronically conducting polymers, and the association with supercapacitor. However, interpretation of pseudocapacitance is inconsistent in the literature. Although all agree that materials are pseudocapacitive if they undergo Faradaic reactions and exhibit rectangular CVs, some have regarded any surface confined Faradaic reactions which may present non-rectangular or even peak-shaped CVs to be pseudocapacitive. In the case of rectangular CVs, the amount of charge stored in the electrode is a linear function of the electrode potential, whilst for non-rectangular or peak-shaped CVs, the relationship is non-linear. It is shown in this article that only linear pseudocapacitance is of relevance to supercapacitor, but non-linear pseudocapacitance may find applications in rechargeable battery and supercapattery. Further, it is clarified that the equation i ?= ?k1v ?+ ?k2v1/2 is useful in analysis of electrode kinetics in terms of surface confinement and diffusion control. However, this kinetic equation is blind to the thermodynamically determined charge storage mechanisms as shown by experimental evidence, and should not be used to differentiate non-capacitive Faradaic processes from pseudocapacitance, either linear or non-linear.
Keywords:Pseudocapacitance  Cyclic voltammetry  Galvanostatic charging and discharging  Supercapacitor  Rechargeable battery  Supercapattery
本文献已被 ScienceDirect 等数据库收录!
点击此处可从《自然科学进展(英文版)》浏览原始摘要信息
点击此处可从《自然科学进展(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号