首页 | 官方网站   微博 | 高级检索  
     

铁修饰生物炭的制备及在砷污染土壤修复中的应用
引用本文:韦婧,刘昳晗,涂晨,邓绍坡,郝丹丹,校亮,毛萌.铁修饰生物炭的制备及在砷污染土壤修复中的应用[J].环境科学,2023,44(2):965-974.
作者姓名:韦婧  刘昳晗  涂晨  邓绍坡  郝丹丹  校亮  毛萌
作者单位:生态环境部南京环境科学研究所, 国家环境保护土壤环境管理与污染控制重点实验室, 南京 210042;肇庆学院广东省环境健康与资源资源利用重点实验室, 肇庆 526061;生态环境部南京环境科学研究所, 国家环境保护土壤环境管理与污染控制重点实验室, 南京 210042;中国科学院烟台海岸带研究所, 中国科学院海岸带环境过程与生态修复重点实验室, 烟台 264003;中国农业大学土地科学与技术学院, 北京 100193
基金项目:国家自然科学基金项目(41977139);中央级公益性科研院所基本科研业务专项(GYZX220101);国家重点研发计划项目(2018YFC1801001-4);烟台市重点研发计划项目(2019XDHZ104)
摘    要:生物炭因具有较大的孔隙度、比表面积以及较强的吸附能力等优点,在环境污染修复、土壤改良和固碳方面应用广泛.由于大多数生物炭表面带有负电荷,而土壤中的无机砷主要以砷酸盐和亚砷酸盐等阴离子形式存在.因此,生物炭对砷的吸附效率通常较低,需要对生物炭进行改性以提升其对砷的吸附效果.零价铁和氧化铁等铁基材料对砷吸附能力强且来源广泛,通过沉淀法、热解法、球磨法和微生物法等方法将铁基材料与生物炭负载形成铁修饰生物炭,可将二者的优良特性相结合,拓展生物炭材料在环境修复中的应用.在对近年来有关铁修饰生物炭的文献进行系统分析的基础上,综述了常见的铁修饰生物炭的制备方法,比较分析了生物炭基底、铁修饰材料以及两者对砷的协同作用机制,并简要阐述了铁修饰生物炭在土壤污染修复中的应用现状,最后对铁修饰生物炭的未来研究方向提出了展望.

关 键 词:生物炭  铁修饰生物炭    吸附机制  土壤修复
收稿时间:2022/3/1 0:00:00
修稿时间:2022/5/16 0:00:00

Preparation of Iron-modified Biochar and Its Application in Arsenic Contaminated Soil Remediation
WEI Jing,LIU Yi-han,TU Chen,DENG Shao-po,HAO Dan-dan,XIAO Liang,MAO Meng.Preparation of Iron-modified Biochar and Its Application in Arsenic Contaminated Soil Remediation[J].Chinese Journal of Environmental Science,2023,44(2):965-974.
Authors:WEI Jing  LIU Yi-han  TU Chen  DENG Shao-po  HAO Dan-dan  XIAO Liang  MAO Meng
Affiliation:State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China;Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Zhaoqing University, Zhaoqing 526061, China;State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China;Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China;College of Land Science and Technology, China Agricultural University, Beijing 100193, China
Abstract:Biochar has a range of advantages including large porosity, high specific surface area, and strong adsorption capacity. It has been widely used in environmental pollution remediation, soil improvement, and carbon sequestration and emission reduction. Arsenic (As) is a highly toxic pollutant widely distributed throughout the soil. In typical surface soils, the most common forms of As are arsenite (AsO33-) and arsenate (AsO43-). Since most biochar surfaces are negatively charged, the adsorption efficiency of biochar to arsenic is usually low, and the biochar material needs to be modified to enhance its As adsorption performance. Iron-based materials, such as zero valent iron and iron oxide, are excellent As adsorption materials with wide environmental sources. They can be loaded to biochar to form iron-modified biochar via precipitation, pyrolysis, ball-milling, and micro-biological methods. The combined advantages of the iron-modified biochar will expand the application of biochar materials in environmental remediation. Based on a systematic analysis of the literature on iron-modified biochar in recent years, this study reviewed the common preparation methods of iron-modified biochars; analyzed biochar substrates, iron-modified biochar, and their synergistic mechanisms on As adsorption; and briefly expounded the application status of iron-modified biochar in soil pollution remediation. The prospects of the future research direction of iron-modified biochar were put forward as a reference for the large-scale application of biochar materials in the future.
Keywords:biochar  iron-modified biochar  arsenic  adsorption mechanism  soil remediation
点击此处可从《环境科学》浏览原始摘要信息
点击此处可从《环境科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号