首页 | 官方网站   微博 | 高级检索  
     


High-performance doping-free carbon-nanotube-based CMOS devices and integrated circuits
Authors:ZhiYong Zhang  Sheng Wang  LianMao Peng
Affiliation:1. Key Laboratory for the Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing, 100871, China
Abstract:Ballistic n-type carbon nanotube (CNT)-based field-effect transistors (FETs) have been fabricated by contacting semiconducting single-walled CNTs (SWCNTs) using Sc or Y. The n-type CNT FETs were pushed to their performance limits through further optimizing their gate structure and insulator. The CNT FETs outperformed n-type Si metal-oxide-semiconductor (MOS) FETs with the same gate length and displayed better downscaling behavior than the Si MOS FETs. Together with the demonstration of ballistic p-type CNT FETs using Pd contacts, this technological advance is a step toward the doping-free fabrication of CNT-based ballistic complementary metal-oxide-semiconductor (CMOS) devices and integrated circuits. Taking full advantage of the perfectly symmetric band structure of the semiconductor SWCNT, a perfect SWCNT-based CMOS inverter was demonstrated, which had a voltage gain of over 160. Two adjacent n- and p-type FETs fabricated on the same SWCNT with a self-aligned top-gate realized high field mobility simultaneously for electrons (3000 cm2 V?1 s?1) and holes (3300 cm2 V?1 s?1). The CNT FETs also had excellent potential for high-frequency applications, such as a high-performance frequency doubler.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号