首页 | 官方网站   微博 | 高级检索  
     

硅锗超晶格结构热导率的分子动力学模拟
引用本文:孙兆伟,张兴丽.硅锗超晶格结构热导率的分子动力学模拟[J].哈尔滨工业大学学报,2011,43(7):28-31.
作者姓名:孙兆伟  张兴丽
作者单位:哈尔滨工业大学卫星工程技术研究所;哈尔滨工业大学卫星工程技术研究所
基金项目:长江学者和创新团队发展计划资助项目(IRT0520)
摘    要:采用Stillinger-Webber势能函数描述硅锗超晶格结构原子间的相互作用,建立硅锗超晶格结构的热传导系统,利用非平衡分子动力学模拟方法计算了不同周期数、不同厚度、不同温度下的Si/Ge超晶格结构热导率.模拟结果表明:超晶格结构热导率随着周期长度和周期数的增加而逐渐增大.受界面热阻效应的影响,靠近高温热墙处导热层...

关 键 词:热导率  分子动力学  超晶格结构  界面热阻

Molecular dynamics simulation on the thermal conductivity of Si/Ge superlattice system
SUN Zhao-wei and ZHANG Xing-li.Molecular dynamics simulation on the thermal conductivity of Si/Ge superlattice system[J].Journal of Harbin Institute of Technology,2011,43(7):28-31.
Authors:SUN Zhao-wei and ZHANG Xing-li
Affiliation:Research Institute of Satellite Engineering and Technology,Harbin Institute of Technology,150001 Harbin,China;Research Institute of Satellite Engineering and Technology,Harbin Institute of Technology,150001 Harbin,China
Abstract:The interaction of atoms in the Si/Ge superlattice is described by using Stillinger-Weber potentials yield intermolecular energy and the heat transport system for Si/Ge superlattice is built up.The dependences of Si/Ge superlattice thermal conductivity on period length,number of periods and temperature are investigated by non-equilibrium molecular dynamics(NEMD) simulation.The results of calculations show that the thermal conductivities increase with an increase in period length and the number of periods.Because of the effects of thermal boundary resistance offered by interfaces,the temperature drop across the interface closest to the hot reservoir is the highest.In addition,the thermal conductivities also increase with the increasing of temperature within the range from 200 K to 600 K.Compared with that of the corresponding SiGe alloy,the thermal conductivities of Si/Ge superlattice are much smaller.
Keywords:thermal conductivity  molecular dynamics  superlattice  thermal boundary resistance
本文献已被 CNKI 等数据库收录!
点击此处可从《哈尔滨工业大学学报》浏览原始摘要信息
点击此处可从《哈尔滨工业大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号