首页 | 官方网站   微博 | 高级检索  
     


Evaluation of Thermal Resistance Matrix Method for an Embedded Power Electronic Module
Authors:Mital  M Ying-Feng Pang Scott  EP
Affiliation:Dept. of Mech. Eng., Virginia Commonwealth Univ., Richmond, VA;
Abstract:Thermal characterization provides data on the thermal performance of electronic components under given cooling conditions. The most common thermal characterization parameter used to characterize the behavior of electronic components is the thermal resistance. In this work, experiments are conducted to obtain thermal characterization data for different chips in a multichip package. Using this data, it is shown that the assumption of a linear temperature rise with input power is valid within the expected range of operation of the electronic module. Secondly, the applicability of a resistance matrix superposition methodology to the packaging structure of an integrated power electronic module is evaluated. The temperatures and the associated uncertainties involved in using the resistance matrix superposition method are compared to those obtained directly by powering all chips. It is shown that for any arbitrary power losses from the chips, the resistance matrix superposition method can predict the temperatures of a multichip package with reasonable accuracy for temperature rise up to 50degC.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号