首页 | 官方网站   微博 | 高级检索  
     


Monte Carlo simulation of energy dissipation of recombining hydrogen in a maze
Authors:M F Chang  Latha Venkataraman  I F Silvera
Affiliation:(1) Lyman Laboratory of Physics, Harvard University, 02138 Cambridge, Massachusetts
Abstract:Studies of 2-D atomic hydrogen at high densities on helium surfaces have been plagued by the heating of the surfaces due to recombination, which dissipates more than 52, 000K for each recombining pair of atoms in the cell. When hydrogen recombines on a surface, it deposits less than 4% of its energy at the point of recombination and the rest is carried off by the excited molecule. We have designed a maze to absorb most of this energy, and carried out a Monte Carlo simulation to show that approximately 87% of the energy is dissipated in the maze, preventing the surface from getting excessively heated, even at high surface densities. This simulation varies the number of inelastic collisions with the maze wall for complete relaxation, the fraction of elastic collisions, and the angular distribution of excited molecules desorbing from the walls.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号