首页 | 官方网站   微博 | 高级检索  
     


Assessment of Sustainable Yield of Karst Water in Huaibei,China
Authors:Dan Yin  Longcang Shu  Xunhong Chen  Zhenlong Wang  Mokhatar Eisa Mohammed
Affiliation:(1) MOE Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China;(2) Shandong Provincial Bureau of Geology and Mineral Resources, 74 Lishan Road, Jinan, 250013, China;(3) Shandong Provincial Institute of Geo-engineering, Jinan, 250014, China;
Abstract:This paper presents the assessment of sustainable yield in the Huaibei karst water area of Anhui province, China. A review of sustainable yield definition is introduced first in this paper, and sustainable development in karst areas is more difficult due to the complicated hydrogeologic conditions. General hydrogeology of the study area is provided to characterize hydraulic connections between the karst aquifer and an overlying porous aquifer. Groundwater level declines continuously due to over-exploitation of the karst groundwater, and two layers of groundwater dropping funnel were formed in Huaibei. These problems not only threaten the eco-geo-environment, but also compromise the water utilization which depends on the shallow porous water. A “critical water level” is proposed in this study to assess the sustainable yield, and it is determined by the historical exploitation data which represent the relationship between the karst water and the shallow porous water uses. A three layer Artificial Neural Network (ANN) model is used to understand the complex relationship of the karst water level and its influencing factors. Precipitation, exploitation and water level of latest period are chosen as the input nodes, seasonal records of water level are simulated by the ANN model. The sustainable yield is calculated by the trail-and-error adjusting method, and is equal to the pumping rate when the “critical water level” is maintained. The rate of 30.05 MCM/a is the sustainable yield for the Huaibei karst area in 2008, and it is less than the real pumping rate of 35.92 MCM/a. This assessment is meaningful to the management for the Huaibei karst water.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号