首页 | 官方网站   微博 | 高级检索  
     


Genetic engineering of structural protein polymers.
Authors:J Cappello  J Crissman  M Dorman  M Mikolajczak  G Textor  M Marquet  F Ferrari
Affiliation:Protein Polymer Technologies, Inc., San Diego, California 92121.
Abstract:Genetic and protein engineering are components of a new polymer chemistry that provide the tools for producing macromolecular polyamide copolymers of diversity and precision far beyond the current capabilities of synthetic polymer chemistry. The genetic machinery allows molecular control of chemical and physical chain properties. Nature utilizes this control to formulate protein polymers into materials with extraordinary mechanical properties, such as the strength and toughness of silk and the elasticity and resilience of mammalian elastin. The properties of these materials have been attributed to the presence of short repeating oligopeptide sequences contained in the proteins, fibroin, and elastin. We have produced homoblock protein polymers consisting exclusively of silk-like crystalline blocks and elastin-like flexible blocks. We have demonstrated that each homoblock polymer as produced by microbial fermentation exhibits measurable properties of crystallinity and elasticity. Additionally, we have produced alternating block copolymers of various amounts of silk-like and elastin-like blocks, ranging from a ratio of 1:4 to 2:1, respectively. The crystallinity of each copolymer varies with the amount of crystalline block interruptions. The production of fiber materials with custom-engineered mechanical properties is a potential outcome of this technology.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号