首页 | 官方网站   微博 | 高级检索  
     


Assessment of dietary and genetic factors influencing serum and adipose fatty acid composition in obese female identical twins
Authors:Email author" target="_blank">Marie?Kune?ováEmail author  Vojtěch?Hainer  Eva?Tvrzická  Stephen?D?Phinney  Vladimír??tich  Jana?Pa?ízková  Ale??Zák  Albert?J?Stunkard
Affiliation:(1) Fourth Medical Department, Charles University, Prague;(2) Galileo Laboratories, 95054 Santa Clara, California;(3) Third Medical School, Charles University, Prague, Czech Republic;(4) Department of Psychiatry, University of Pennsylvania, 19104 Philadelphia, Pennsylvania;(5) Obesity Management Centre, Third Medical Department, First Medical School, Charles University, U nemocnice 1, 128 08 Prague, Czech Republic
Abstract:Fourteen pairs of obese female monozygotic twins were recruited for a study of genetic influences on serum and adipose fatty acid (FA) composition. Following 1 wk of inpatient stabilization, fasting serum and adipose tissue obtained by surgical excision were analyzed by thin-layer and gas chromatography. Intrapair resemblances (IPR) for individual FA were assessed by Spearman rank correlation and by analysis of variance and were found in serum cholesteryl esters (CE), triglycerides (TG), and adipose TG. With two exceptions (CE linoleate and adipose eicosapentaenoate), these IPR were limited to the nonessential FA. Palmitate had significant IPR in four lipid fractions; in serum CE and adipose TG palmitate was strongly correlated with multiple measures of adiposity. In contrast to other lipid fractions, serum phosphatidylcholine (PC) FA had 12 IPR, of which 6 were essential FA including arachidonate (r=0.76, P<0.0005), eicosapentaenoate (r=0.78, P<0.0005), and docosahexaenoate (r=0.86, P<0.0001). The PC IPR could not be explained by analysis of preadmission 7-d food records. After dividing the pairs into two groups differing and nondiffering according to fat intake of individuals in the pair, there was no evidence of a gene-environment interaction between fat intake and FA composition. The IPR for nonessential FA indicate that there is active genetic control of either food choices or postabsorptive metabolic processing. The high level of IPR in the PC fraction in contrast to the other lipid fractions suggests strong genetic influence over selection of specific FA for this membrane fraction independent of diet.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号