首页 | 官方网站   微博 | 高级检索  
     


Facile mechano-chemical synthesis and enhanced photocatalytic performance of Cu2ZnSnS4 nanopowder
Affiliation:1. School of Materials Science and Engineering, Key Laboratory of Nonferrous Materials and New Processing Technology of Ministry of Education, Guilin University of Technology, Guilin 541004, China;2. Institute of Materials for Electronics and Energy Technology (I-MEET), Department of Materials Science and Engineering, Friedrich-Alexander University Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany
Abstract:In the present study, Cu2ZnSnS4 (CZTS) powder was synthesized by the mechano-chemical method from its elemental constituents. X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and diffusion reflectance spectroscopy (DRS) were used for characterization of structural, morphological and optical properties. XRD result confirmed that a highly crystalline CZTS phase corresponding to the kesterite structure was formed after 50 h ball milling. Raman analysis confirmed the existence of single phase CZTS without any other phases. FESEM and TEM images reveal the irregular CZTS nanoparticles with an average size of 90 nm. The elemental mapping of the CZTS nanopowder showed the uniform distribution in agreement with the stoichiometry. DRS result showed a band gap value of 1.53 eV. XPS result revealed the oxidation states as Cu+, Zn2+, Sn4+ and S2−. The photocatalytic activity of CZTS has been investigated through photodegradation of methylene blue (MB) and methyl orange (MO) dyes solution with different concentrations under visible light irradiation. Although the CZTS decomposed MO only 81% until 210 min, the MB solution was completely photodegraded after 100 min. A kinetic study by Langmuir-Hinshelwood (L-H) model indicated about 3.7 times faster degradation of MB than MO and also higher adsorption capacity for MB by CZTS. Furthermore, the prepared CZTS was reusable and can be repeatedly used for the removal of dyes from aqueous solutions.
Keywords:Nanopowder  Mechano-chemical  Photocatalyst
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号