首页 | 官方网站   微博 | 高级检索  
     


Water Level Effects on Growth of Melaleuca Seedlings from Lake Okeechobee (Florida, USA) Littoral Zone
Authors:Christine Lockhart  Daniel F Austin  Nicholas G Aumen
Affiliation:(1) Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida 33431, USA , US;(2) Ecosystem Restoration Department, South Florida Water Management District, P.O.B. 24680, West Palm Beach, Florida 33416, USA , US
Abstract:Melaleuca quinquenervia, is expanding rapidly throughout seasonally wet areas of southern Florida (USA), including the littoral zone of Lake Okeechobee. Natural resource managers are concerned that a lower lake level regulation schedule under consideration for Lake Okeechobee, while potentially beneficial to overall ecosystem health, might increase the rate of Melaleuca expansion. To investigate this possibility, Melaleuca saplings (harvested from the littoral zone) and 7-week-old seedlings (grown from harvested seeds) were subjected to various hydroperiod treatments in replicated mesocosms. Hydroperiod treatments were selected based on a simulation of historical water level variations. Saplings grew taller under longer hydroperiods with fluctuating water levels, including periods of submersion. Time since germination affected the response of seedlings to inundation. Submersed 7-week-old seedlings grew slower and had less biomass than submersed 12-week-old seedlings, yet mortality was low at both ages. Melaleuca's plasticity allows it to adapt to hypoxic, aquatic conditions by means of aquatic heterophylly and adventitious roots. Algae and drought also increased mortality. Based on faster growth of Melaleuca under longer hydroperiods and its adaptability to seasonal flooding, a lower lake regulation schedule may not stimulate its expansion. Therefore, water levels should not be manipulated only to control Melaleuca. Control of Melaleuca should continue using current practices such as manual removal or chemical treatment.
Keywords:: Melaleuca  Lake Okeechobee  Littoral zone  Water level  Regulation schedule
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号