首页 | 官方网站   微博 | 高级检索  
     


Lie-algebraic stability conditions for nonlinear switched systems and differential inclusions
Authors:Michael Margaliot  Daniel Liberzon  
Affiliation:aDepartment of Electrical Engineering - Systems, Tel Aviv University, Tel Aviv 69978, Israel;bCoordinated Science Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61821, United States
Abstract:We present a stability criterion for switched nonlinear systems which involves Lie brackets of the individual vector fields but does not require that these vector fields commute. A special case of the main result says that a switched system generated by a pair of globally asymptotically stable nonlinear vector fields whose third-order Lie brackets vanish is globally uniformly asymptotically stable under arbitrary switching. This generalizes a known fact for switched linear systems and provides a partial solution to the open problem posed in D. Liberzon, Lie algebras and stability of switched nonlinear systems, in: V. Blondel, A. Megretski (Eds.), Unsolved Problems in Mathematical Systems and Control Theory, Princeton University Press, NJ, 2004, pp. 203–207.]. To prove the result, we consider an optimal control problem which consists in finding the “most unstable” trajectory for an associated control system, and show that there exists an optimal solution which is bang-bang with a bound on the total number of switches. This property is obtained as a special case of a reachability result by bang-bang controls which is of independent interest. By construction, our criterion also automatically applies to the corresponding relaxed differential inclusion.
Keywords:Switched nonlinear system  Global asymptotic stability  Lie bracket  Optimal control  Maximum principle  Differential inclusion
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号