首页 | 官方网站   微博 | 高级检索  
     


Heat transfer characteristics of multiwall carbon nanotube suspensions (MWCNT nanofluids) in intertube falling-film flow
Authors:Binglu Ruan  Anthony M Jacobi
Affiliation:1. Mechanical Science and Engineering, University of Illinois, Urbana, IL 61801, USA;2. Department of Thermal Engineering, Tsinghua University, Beijing 100084, China;3. Department of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Abstract:Multiwall carbon nanotube suspensions (MWCNT nanofluids) are used in an intertube falling-film flow to explore the nanofluid effects on heat transfer characteristics. Water-based and ethylene–glycol-based nanofluids are prepared at concentrations of 0, 0.05, 0.14 and 0.24 vol%. Thermal conductivity and viscosity of these nanofluids is measured. Falling-film heat transfer behavior of these nanofluids is also investigated and the results are compared to those of the base fluids. Based on the same liquid feeding flow rate, it is observed that the heat transfer coefficients of the water-based nanofluids decreases then increases as the MWCNT concentration increases, and the heat transfer coefficient of the ethylene–glycol-based nanofluids decreases with an increased MWCNT concentration. A model is provided for predicting the heat transfer enhancement of the nanofluids in intertube falling-film flow, and an agreement between predictions and experimental data is obtained for nanofluids with larger MWCNT concentrations. When comparing the heat transfer coefficient based on the same Reynolds number, up to 20% or higher heat transfer enhancement can be observed for ethylene–glycol based nanofluids.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号