首页 | 官方网站   微博 | 高级检索  
     


Removal of nitric oxide from simulated flue gas via denitrification in a hollow-fiber membrane bioreactor
Authors:Xinyu Zhang  Ruofei Jin  Guangfei Liu  Xiyang Dong  Jiti Zhou and Aijie Wang
Affiliation:[1]Key Laboratory of lndustrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road Dalian 116024, China [2]State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
Abstract:A hollow-fiber membrane bioreactor (HMBR) was studied for its ability to treat nitric oxide (NO) from simulated flue gas. The HMBR was operated for 9 months and showed a maximum elimination capacity of 702 mg NO/(m2day) with a removal efficiency of 86% (gas residence time of 30 sec, inlet NO concentration of 2680 mg/m3, pH 8). Varying operation parameters were tested to determine the stability and response of the HMBR. Both the inlet NO concentration and gas residence time influenced the removal of NO in the HMBR. NO elimination capacity increased with an increase in inlet NO concentration or a shortening of gas residence time. Higher removal efficiency of NO was obtained at a longer gas residence time or a lower inlet NO concentration. Microbial communities of the HMBR were sensitive to the variation in pH value and alkalescence corresponding to an optimum pH value of 8. In addition, NO elimination capacity and removal efficiency were inversely proportional to the inlet oxygen concentration. Sulfur dioxide had no great influence on elimination capacity and removal efficiency of NO. Product analysis was performed to study N2O and N2 production and confirmed that the majority of the microorganisms were denitrifying bacteria in the HMBR. Compared to other bioreactors treating NO, this study showed that the denitrifying HMBR was a good option for the removal of NO.
Keywords:nitric oxide  denitrification  hollow-fiber membrane bioreactor  biofilm
本文献已被 CNKI 维普 ScienceDirect 等数据库收录!
点击此处可从《环境科学学报(英文版)》浏览原始摘要信息
点击此处可从《环境科学学报(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号