首页 | 官方网站   微博 | 高级检索  
     


Facile synthesis of ordered nanocrystalline alumina thin films with tunable mesopore structures
Authors:Lijuan Wan  Honggang Fu  Keying Shi  Xiqiang Tian
Affiliation:aDepartment of Applied Chemistry, Harbin Institute of Technology, Harbin 150001, China;bLaboratory of Physical Chemistry, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
Abstract:Mesoporous alumina layers have attracted attention for their potential use in ultrafiltration of salts, as a heterogeneous catalyst support, an adsorbent in environmental cleanup, and in petroleum refinement. The ability to control the fast hydrolysis rate of the inorganic precursors using simple and inexpensive routes is important for that potential to be realized. Herein, we introduce a novel and facile route to synthesize mesoporous alumina thin films from the combination of inexpensive and commercially available copolymer with aluminum chloride or nitrate (salts) in an EtOH–surfactant–NH3 · H2O–salts (EsNs) system through the evaporation-induced self-assembly (EISA) method. Mesoporous alumina layers obtained utilizing the EsNs system have ordered and tunable pore structures. The ability to easily control the mesophases of the alumina layers within a short time provides distinct advantages over previously reported synthesis procedures. Most importantly, we demonstrate that the binding of surfactant and NH3 · H2O for the formation of hydrogen bond between them in the EsNs system controls the fast hydrolysis rate of the inorganic species. This allows for the synthesis of nanocrystalline alumina layers via the aluminum oxo-clusters’ assembly with the surfactant. Such simple route may be applied in the synthesis of other non-silica mesostructured oxides.
Keywords:Mesoporous alumina  Evaporation-induced self-assembly (EISA)  Thin films  Nanocrystalline  Tunable
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号