首页 | 官方网站   微博 | 高级检索  
     


Assessing PM10 source reduction in urban agglomerations for air quality compliance
Authors:Aleksandropoulou Victoria  Eleftheriadis Konstantinos  Diapouli Evangelia  Torseth Kjetil  Lazaridis Mihalis
Affiliation:Department of Environmental Engineering, Technical University of Crete, Chania, Greece. vic.aleksandropoulou@enveng.tuc.gr
Abstract:The objective of this work was to study PM(10) and PM(2.5) concentration data available from monitoring stations in two large urban agglomerations in Greece and to estimate the emissions reduction required for compliance with the EU Air Quality Standards (AQS) for particulate matter. The cities studied are namely the Athens and Thessaloniki Metropolitan Areas (AMA and TMA, respectively). PM(10) concentrations during the period 2001-2010 have been evaluated for 15 air quality monitoring stations in the two urban areas. It was found that the concentrations of PM(10) during the period studied constantly exceeded the threshold values at the traffic and industrial stations in TMA and most of the traffic sites in AMA. Most of the occurrences of non-attainment to the daily AQSs were observed during the winter period at all stations (more pronounced for TMA stations). The reduction in current emission source strength to meet the air quality goal was calculated by the rollback equation using PM(10) day-averaged concentrations over the selected period at each station. Among the lognormal and Weibull distributions, the lognormal distribution was found to best fit the frequency distributions of PM(10) concentrations at the selected stations. The results showed that the minimum reduction required in order to meet the AQS in the AMA ranges from approximately 20 to 38% and up to 11% for traffic and background stations, respectively. Reductions in the range of 31% for traffic and 44% for industrial areas in TMA are also required. The same methodology was applied to PM(2.5) concentrations in the AMA and showed that emission reductions up to 31% are necessary in order to meet the 2020 EU AQS. Finally, continuous concentration data of organic (OC) and elementary carbon (EC) in PM(2.5) were used to study the possibility of achieving specific emission attenuation objectives in AMA.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号