首页 | 官方网站   微博 | 高级检索  
     


Learning and convergence analysis of neural-type structurednetworks
Authors:Polycarpou  MM Ioannou  PA
Affiliation:Dept. of Electr. Eng.-Syst., Univ. of Southern California, Los Angeles, CA.
Abstract:A class of feedforward neural networks, structured networks, has recently been introduced as a method for solving matrix algebra problems in an inherently parallel formulation. A convergence analysis for the training of structured networks is presented. Since the learning techniques used in structured networks are also employed in the training of neural networks, the issue of convergence is discussed not only from a numerical algebra perspective but also as a means of deriving insight into connectionist learning. Bounds on the learning rate are developed under which exponential convergence of the weights to their correct values is proved for a class of matrix algebra problems that includes linear equation solving, matrix inversion, and Lyapunov equation solving. For a special class of problems, the orthogonalized back-propagation algorithm, an optimal recursive update law for minimizing a least-squares cost functional, is introduced. It guarantees exact convergence in one epoch. Several learning issues are investigated.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号