首页 | 官方网站   微博 | 高级检索  
     


Numerical investigation of wind turbine wake development in directionally sheared inflow
Authors:Marc Bromm  Lukas Vollmer  Martin Kühn
Affiliation:Institute of Physics, ForWind, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
Abstract:Turbines in wind farms are subject to complex mutual aerodynamic interactions, which in detail depend upon the characteristics of the atmospheric boundary layer. Our two objectives with this paper were to investigate the impact of directionally sheared inflow on the wake development behind a single wind turbine and to analyse the impact of the wakes on the energy yield and loading of a downstream turbine, which is exposed to partial and full wake conditions. We performed simulations with a framework based on a coupled approach of large‐eddy simulation and an actuator line representation of an aeroelastic turbine model. Our results show that directionally sheared inflow leads to a non‐symmetrical wake development, which transfers to distinct differences in the energy yield and loading of downstream turbines of equal lateral offsets in opposite direction. Therefore, the assumption of wakes being axisymmetrical could lead to notable deviations in the prediction of wake behaviour and their impact on downstream turbines for atmospheric inflow conditions, which include directional shear. Copyright © 2016 John Wiley & Sons, Ltd.
Keywords:LES  ACL  Coriolis  atmospheric inflow  wind veer  shear
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号