首页 | 官方网站   微博 | 高级检索  
     


On the prediction of the phase distribution of bubbly flow in a horizontal pipe
Authors:GH Yeoh  Sherman CP CheungJY Tu
Affiliation:a Australian Nuclear Science and Technology Organisation (ANSTO), PMB 1, Menai, NSW 2234, Australia
b School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney 2052, Australia
c School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Victoria 3083, Australia
Abstract:Horizontal bubbly flow is widely encountered in various industrial systems because of its ability to provide large interfacial areas for heat and mass transfer. Nonetheless, this particular flow orientation has received less attention when compared to vertical bubbly flow. Owing to the strong influence due to buoyancy, the migration of dispersed bubbles towards the top wall of the horizontal pipe generally causes a highly asymmetrical internal phase distributions, which are not experienced in vertical bubbly flow. In this study, the internal phase distribution of air-water bubbly flow in a long horizontal pipe with an inner diameter of 50.3 mm has been predicted using the population balance model based on direct quadrature method of moments (DQMOM) and multiple-size group (MUSIG) model. The predicted local radial distributions of gas void fraction, liquid velocity and interfacial area concentration have been validated against the experimental data of Kocamustafaogullari and Huang (1994). In general, satisfactory agreements between predicted and measured results were achieved. The numerical results indicated that the gas void fraction and interfacial area concentration have a unique internal structure with a prevailing maximum peak near the top wall of the pipe due to buoyancy effect.
Keywords:Population balance  Computational fluid dynamics  Horizontal bubbly flow
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号