首页 | 官方网站   微博 | 高级检索  
     


Energy consumption mode identification and monitoring method of process industry system under unstable working conditions
Affiliation:1. School of Reliability and Systems Engineering, Beijing University of Aeronautics and Astronautics, Beijing, PR China;2. Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing, PR China;3. State Key Laboratory of Virtual Reality Technology and System, Beijing, PR China;1. ISAE-SUPMECA, Quartz Laboratory, Saint-Ouen, France;2. Roberval Laboratory, University of Technology of Compiègne, Compiègne, France;3. Laboratory of Mechanics of Sousse, National Engineering School of Sousse, University of Sousse, Sousse, Tunisia;1. Centre for Maritime Studies, National University of Singapore, 12 Prince George’s Park, Singapore 118411, Singapore;2. School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;1. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China;2. School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China;3. National NC System Engineering Research Center, Huazhong University of Science and Technology, Wuhan 430074, China;1. School of Hydraulic Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, PR China;2. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, PR China
Abstract:Process industry systems under unstable working conditions are prone to potential anomalies, deviating from the original transition trajectory, and taking longer than expected to return to stability due to persistent disturbances from uncertainties and experience-based regulation errors. The energy waste caused by this situation has not received sufficient attention, and cannot be addressed by existing energy consumption monitoring methods. Herein, an energy consumption mode (ECM) identification and monitoring method under unstable working conditions is proposed, consisting of ECM identification model and multi-mode dynamic monitoring model, focusing on the variation rules of the correlation between energy consumption and other states of the system. In the ECM identification stage, the ECM correlation parameters that reflect the comprehensive production information are selected. Then, given the transfer characteristics of ECM, a Hidden Semi-Markov Model (HSMM) is constructed to fit the migration between modes and the duration within modes. The Variational Bayesian Gaussian Mixture Model is introduced to improve the HSMM, which solves the problem of lacking prior knowledge of ECM and achieves the automatic classification and online identification of ECM. In the dynamic monitoring stage of multi-ECMs, a series of dynamic kernel principle component analysis models are established, and the corresponding monitoring thresholds are set for each ECM. By calculating the maximum of the posteriori probability and the mode thresholds, the ECMs under unstable conditions can be accurately identified and automatically monitored. Compared with previous methods, the proposed method reduces the false detection rate and missed detection rate of abnormal ECM identification to 1.04% and 1.31% in the actual slag grinding production process, which proves its effectiveness.
Keywords:Unstable working condition  Energy consumption mode identification  Hidden Semi-Markov Model  Dynamic kernel principle component analysis  ECM"}  {"#name":"keyword"  "$":{"id":"k0030"}  "$$":[{"#name":"text"  "_":"Energy Consumption Mode  HSMM"}  {"#name":"keyword"  "$":{"id":"k0040"}  "$$":[{"#name":"text"  "_":"Hidden Semi-Markov Model  HMM"}  {"#name":"keyword"  "$":{"id":"k0050"}  "$$":[{"#name":"text"  "_":"Hidden Markov Model  VBGMM"}  {"#name":"keyword"  "$":{"id":"k0060"}  "$$":[{"#name":"text"  "_":"Variational Bayesian Gaussian Mixture Model  PCA"}  {"#name":"keyword"  "$":{"id":"k0070"}  "$$":[{"#name":"text"  "_":"Principle Component Analysis  KPCA"}  {"#name":"keyword"  "$":{"id":"k0080"}  "$$":[{"#name":"text"  "_":"Kernel Principal Component Analysis  DPCA"}  {"#name":"keyword"  "$":{"id":"k0090"}  "$$":[{"#name":"text"  "_":"Dynamic Principal Component Analysis  DKPCA"}  {"#name":"keyword"  "$":{"id":"k0100"}  "$$":[{"#name":"text"  "_":"Dynamic Kernel Principal Component Analysis  NPCA"}  {"#name":"keyword"  "$":{"id":"k0110"}  "$$":[{"#name":"text"  "_":"Nonlinear Principal Component Analysis  PPCA"}  {"#name":"keyword"  "$":{"id":"k0120"}  "$$":[{"#name":"text"  "_":"Probabilistic Principal Component Analysis  AHP"}  {"#name":"keyword"  "$":{"id":"k0130"}  "$$":[{"#name":"text"  "_":"Analytic Hierarchy Process  RF"}  {"#name":"keyword"  "$":{"id":"k0140"}  "$$":[{"#name":"text"  "_":"Random Forest  DPC"}  {"#name":"keyword"  "$":{"id":"k0150"}  "$$":[{"#name":"text"  "_":"Density Peaks Clustering  NPA"}  {"#name":"keyword"  "$":{"id":"k0160"}  "$$":[{"#name":"text"  "_":"Neighbor Phase Association  MMD"}  {"#name":"keyword"  "$":{"id":"k0170"}  "$$":[{"#name":"text"  "_":"Maximum Mean Difference  ML"}  {"#name":"keyword"  "$":{"id":"k0180"}  "$$":[{"#name":"text"  "_":"Machine Learning  MSPC"}  {"#name":"keyword"  "$":{"id":"k0190"}  "$$":[{"#name":"text"  "_":"Multivariate Statistical Process Control  PLS"}  {"#name":"keyword"  "$":{"id":"k0200"}  "$$":[{"#name":"text"  "_":"Partial Least Square  SFPLS"}  {"#name":"keyword"  "$":{"id":"k0210"}  "$$":[{"#name":"text"  "_":"Slow Feature Partial Least Squares  SVM"}  {"#name":"keyword"  "$":{"id":"k0220"}  "$$":[{"#name":"text"  "_":"Supported Vector Machines  SPE"}  {"#name":"keyword"  "$":{"id":"k0230"}  "$$":[{"#name":"text"  "_":"Squared Prediction Error  MAP"}  {"#name":"keyword"  "$":{"id":"k0240"}  "$$":[{"#name":"text"  "_":"maximum a posteriori  KDE"}  {"#name":"keyword"  "$":{"id":"k0250"}  "$$":[{"#name":"text"  "_":"kernel density estimation  SGS"}  {"#name":"keyword"  "$":{"id":"k0260"}  "$$":[{"#name":"text"  "_":"Slag Grinding System  VRM"}  {"#name":"keyword"  "$":{"id":"k0270"}  "$$":[{"#name":"text"  "_":"Vertical Roller Mill  SPC"}  {"#name":"keyword"  "$":{"id":"k0280"}  "$$":[{"#name":"text"  "_":"Specific Power Consumption  CL"}  {"#name":"keyword"  "$":{"id":"k0290"}  "$$":[{"#name":"text"  "_":"Cycling Load  VMS"}  {"#name":"keyword"  "$":{"id":"k0300"}  "$$":[{"#name":"text"  "_":"Vibration of Mill Shell  PPS"}  {"#name":"keyword"  "$":{"id":"k0310"}  "$$":[{"#name":"text"  "_":"Product Particle Size  HAFP"}  {"#name":"keyword"  "$":{"id":"k0320"}  "$$":[{"#name":"text"  "_":"Hot Air Furnace Pressure  TML"}  {"#name":"keyword"  "$":{"id":"k0330"}  "$$":[{"#name":"text"  "_":"Thickness of Material Layer
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号