首页 | 官方网站   微博 | 高级检索  
     

2000–2011年三江源区植被覆盖时空变化特征(英文)
引用本文:刘宪锋,张锦水,朱秀芳,潘耀忠,刘焱序,张东海,林志慧.2000–2011年三江源区植被覆盖时空变化特征(英文)[J].地理学报(英文版),2014(2).
作者姓名:刘宪锋  张锦水  朱秀芳  潘耀忠  刘焱序  张东海  林志慧
基金项目:Major Project of High-resolution Earth Observation System
摘    要:The Three-River Headwaters Region(TRHR), which is the source area of the Yangtze River, Yellow River, and Lancang River, is of key importance to the ecological security of China. Because of climate changes and human activities, ecological degradation occurred in this region. Therefore, "The nature reserve of Three-River Source Regions" was established, and "The project of ecological protection and construction for the Three-River Headwaters Nature Reserve" was implemented by the Chinese government. This study, based on MODIS-NDVI and climate data, aims to analyze the spatiotemporal changes in vegetation coverage and its driving factors in the TRHR between 2000 and 2011, from three dimensions. Linear regression, Hurst index analysis, and partial correlation analysis were employed. The results showed the following:(1) In the past 12 years(2000–2011), the NDVI of the study area increased, with a linear tendency being 1.2%/10a, of which the Yangtze and Yellow River source regions presented an increasing trend, while the Lancang River source region showed a decreasing trend.(2) Vegetation coverage presented an obvious spatial difference in the TRHR, and the NDVI frequency was featured by a bimodal structure.(3) The area with improved vegetation coverage was larger than the degraded area, being 64.06% and 35.94%, respectively during the study period, and presented an increasing trend in the north and a decreasing trend in the south.(4) The reverse characteristics of vegetation coverage change are significant. In the future, degradation trends will be mainly found in the Yangtze River Basin and to the north of the Yellow River, while areas with improving trends are mainly distributed in the Lancang River Basin.(5) The response of vegetation coverage to precipitation and potential evapotranspiration has a time lag, while there is no such lag in the case of temperature.(6) The increased vegetation coverage is mainly attributed to the warm-wet climate change and the implementation of the ecological protection project.

本文献已被 CNKI 等数据库收录!
点击此处可从《地理学报(英文版)》浏览原始摘要信息
点击此处可从《地理学报(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号