首页 | 官方网站   微博 | 高级检索  
     


Sulfotransferase 2A1 forms estradiol-17-sulfate and celecoxib switches the dominant product from estradiol-3-sulfate to estradiol-17-sulfate
Authors:Wang Li-Quan  James Margaret O
Affiliation:

Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA

Abstract:Using recombinant sulfotransferases (SULTs) expressed in E. coli, β-estradiol (E2) sulfonation was examined to determine which SULT enzyme is responsible for producing E2-17-sulfate (E2-17-S). SULTs 1A1*1, 1A1*2, 1A3, 1E1 and 2A1 all sulfated E2 to varying extents. No activity was observed with SULT1B1. Among the SULTs studied, SULT2A1 produced primarily E2-3-sulfate (E2-3-S), but also some E2-17-S and trace amounts of E2 disulfate. SULT2A1 had a Km value of 1.52 μM for formation of E2-3-S and 2.95 μM for formation of E2-17-S. SULT2A1 had the highest Vmax of 493 pmol/min/mg protein for formation of E2-3-S, which was 8.8- and 47-fold higher than the maximal rates of formation of E2-17-S and E2 disulfate, respectively. SULT2A1 formed E2-3-S more efficiently. However, when celecoxib (0–160 μM) was included in the incubation with either SULT2A1 or human liver cytosol, sulfonation switched from E2-3-S to E2-17-S in a concentration-dependent manner. The ratio of E2-17-S/E2-3-S went up to 15 with SULT2A1, and was saturated at 1 with human liver cytosol. In both cases, more E2-17-S was formed, with the unreacted E2 remained unchanged, suggesting celecoxib probably bound to a separate effector site to cause a conformational change in SULT2A1, which favored production of E2-17-S. The ability of celecoxib to alter the position of sulfonation of E2 may in part explain its success in the experimental prevention and treatment of breast cancer.
Keywords:β-Estradiol  Estradiol-3-sulfate  Estradiol-17-sulfate  Estradiol disulfate  Sulfotransferase 2A1  Celecoxib
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号