首页 | 官方网站   微博 | 高级检索  
     


Hole-limiting conductive vinyl copolymers for AlQ3-based OLED applications
Authors:Tik H Lee  KM Lai  Louis M Leung  
Affiliation:aDepartment of Chemistry and Centre for Advanced Luminescence Materials (CALM), Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
Abstract:A series of soluble conductive vinyl copolymers containing a hole-transporting N-(4-methoxyphenyl)-N-phenylnaphthalen-1-amine (MeONPA) moiety and an electron-transporting/hole-blocking 2,5-diphenyl-1,3,4-oxadiazole (OXA) moiety at different composition ratios were synthesized and characterized. The copolymers were applied as the hole-transporting layer (HTL) for a series of heterojunction Organic Light-emitting Diodes (OLEDs) employing the commonly used green emitter tris(8-hydroxyquinolinato)aluminum (AlQ3) as the electron-transporting layer. AlQ3 is known to have inferior electron mobility compared to most typical hole-transporting materials. As a result, oxidative degradation of the AlQ3 emitters caused by the excessive holes accumulated at the interface led to deterioration of the device over time. From the measurement of hole current only devices using electron blocking gold as cathode (ITO/PEDOT:PSS/copolymer/Au), it was found that the hole current for the copolymers reduced as the OXA composition increased. Optimum performance for the AlQ3-based OLED (ITO/PEDOT:PSS/copolymer/AlQ3/Ca/Al) was achieved for a 82/18 (molar ratio) (MeONPA/OXA) copolymer. The maximum current efficiency and luminance were 4.2 cd/A and ca 24,000 cd/m2 respectively for the charge-balanced copolymer compared to 3.5 cd/A and 6600 cd/m2 for similar device employing a homopolymer P(MeONPA) as the HTL.
Keywords:N-(4-Methoxyphenyl)-N-(4-vinylphenyl)naphthalen-1-amine  2-Phenyl-5-(4-vinylphenyl)-1  3  4-oxadiazole  Charge-balance  OLED
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号