首页 | 官方网站   微博 | 高级检索  
     


The Involvement of Collagen Triple Helix Repeat Containing 1 in Muscular Dystrophies
Authors:Itai Spector  Yael Zilberstein  Adi Lavy  Olga Genin  Hila Barzilai-Tutsch  Ana Bodanovsky  Orna Halevy  Mark Pines
Affiliation:1. Institute of Animal Sciences, Volcani Center, Bet Dagan, Israel;2. Department of Animal Sciences, the Hebrew University of Jerusalem, Rehovot, Israel;3. The Sackler Cellular and Molecular Imaging Center, Tel Aviv University, Tel Aviv, Israel
Abstract:Apolipoprotein E4 (APOE4) genotype is the strongest genetic risk factor for late-onset Alzheimer disease and confers a proinflammatory, neurotoxic phenotype to microglia. Here, we tested the hypothesis that bone marrow cell APOE genotype modulates pathological progression in experimental Alzheimer disease. We performed bone marrow transplants (BMT) from green fluorescent protein–expressing human APOE3/3 or APOE4/4 donor mice into lethally irradiated 5-month-old APPswe/PS1ΔE9 mice. Eight months later, APOE4/4 BMT–recipient APPswe/PS1ΔE9 mice had significantly impaired spatial working memory and increased detergent-soluble and plaque Aβ compared with APOE3/3 BMT–recipient APPswe/PS1ΔE9 mice. BMT-derived microglia engraftment was significantly reduced in APOE4/4 recipients, who also had correspondingly less cerebral apoE. Gene expression analysis in cerebral cortex of APOE3/3 BMT recipients showed reduced expression of tumor necrosis factor-α and macrophage migration inhibitory factor (both neurotoxic cytokines) and elevated immunomodulatory IL-10 expression in APOE3/3 recipients compared with those that received APOE4/4 bone marrow. This was not due to detectable APOE-specific differences in expression of microglial major histocompatibility complex class II, C-C chemokine receptor (CCR) type 1, CCR2, CX3C chemokine receptor 1 (CX3CR1), or C5a anaphylatoxin chemotactic receptor (C5aR). Together, these findings suggest that BMT-derived APOE3-expressing cells are superior to those that express APOE4 in their ability to mitigate the behavioral and neuropathological changes in experimental Alzheimer disease.Humans uniquely have three different apolipoprotein E (APOE) alleles (?2, ?3, and ?4). APOE4 is the single greatest genetic risk factor for late-onset Alzheimer disease (AD), and there is a gene dosage effect.1 However, genetic association does not inform function/pathogenesis. Multiple mechanisms have been postulated that predominantly focus on production, metabolism, or clearance of amyloid-β (Aβ) and that are variably supported by multiple observations, including: i) APOE genotype is strongly related to Aβ levels in brain and cerebrospinal fluid of AD patients2,3; ii) modulation of apolipoprotein E (apoE) protein levels in brain results in alterations of Aβ burden4,5; iii) Aβ degradation is at least partially apoE dependent6,7; and iv) Aβ clearance is differentially modulated by apoE isoforms, with APOE4 mice exhibiting reduced central and peripheral Aβ clearance compared with APOE3 mice.8–10 Aβ degradation and clearance is at least partially dependent on microglia, the innate immune effector cells of the brain. Microglia have migratory and phagocytic capacity, are increased in the vicinity of Aβ plaques, and phagocytose Aβ.11–13 APOE genotype modulates central nervous system innate immune function in culture,14 including astrocyte and microglia elaboration of cytokines and chemokines,15,16 microglia production of reactive oxygen species,17 microglia-mediated paracrine neurotoxicity,18 microglia migration,19 and other functions.20 However, the specific contribution of microglial APOE genotype to AD pathophysiology in vivo is largely unknown.To address this critical question and to test a potential therapeutic application, we used the fact that bone marrow transplantation (BMT) results in the gradual replacement of endogenous (host) microglia (to the near exclusion of other cell types) with microglia derived from donor marrow, in both wild-type mice and transgenic mouse models of AD.21–24 We used targeted-replacement (TR) APOE mice homozygous for either the APOE3 or APOE4 gene inserted into the mouse APOE regulatory elements25,26 that coexpressed green fluorescent protein (GFP). We transplanted whole bone marrow (BM) isolated from TR APOE3/3;GFP or TR APOE4/4;GFP mice into lethally irradiated APPswe/PS1ΔE9 mice to determine the specific role of microglial APOE genotype in the pathological progression of AD.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号