首页 | 官方网站   微博 | 高级检索  
     


Study on Mass Transfer Characteristics in an AOD Converter Bath under Conditions of Combined Side and Top Blowing
Authors:Ji‐He Wei  Huai‐Ying Zuo
Affiliation:Department of Metallic Materials, College of Materials Science and Engineering, Shanghai University, 149 Yan Chang Road, Shanghai, 200072 P. R. China
Abstract:The mass transfer characteristics in a steel bath during the AOD refining process with the conditions of combined side and top blowing were investigated. The experiments were conducted on a water model unit of 1/4 linear scale for a 120‐t combined side and top blowing AOD converter. Sodium chloride powder of analytical purity was employed as the flux for blowing, and the mass transfer coefficient of solute (NaCI) in the bath was determined under the conditions of the AOD process. The effects of the gas flow rates of side and top blowing processes, the position arrangement and number of side tuyeres, the powdered flux particle (bubble) size and others on the characteristics were examined. The results indicated that, under the conditions of the present work, the mass transfer coefficient of solute in the bath liquid is in the range of (7.31×10?5‐3.84×10?4) m/s. The coefficient increases non‐linearly with increasing angle between each tuyere, for the simple side blowing process at a given side tuyere number and gas side blowing rate. The gas flow rate of the main tuyere has a governing influence on the characteristics, and the gas jet from the top lance decreases the mass transfer rate, the relevant coefficient being smaller than that for a simple side blowing. Also, in the range of particle (bubble) size used in the present work and with all other factors being constant, raising particle (bubble) size increases the coefficient. Excessively fine powder particle (bubble) sizes are not advantageous to strengthening the mass transfer. With the oxygen top blowing rate practiced in the industrial technology, the side tuyere arrangements of 7 and 6 tuyeres with an angular separation of 22.5° and 27° between each tuyere, as well as 5 tuyeres with an angle of 22.5° between each tuyere can provide a larger mass transfer rate in the bath. Considering the relative velocity of the particles to the liquid, the energy dissipation caused by the fluctuation in the velocity of the liquid in turbulent flow and regarding the mass transfer as that between a rigid bubble and molten steel, the related dimensionless relationships for the coefficient were obtained.
Keywords:stainless steel  AOD refining  side and top combined blowing process  mass transfer characteristics in bath  physical modeling
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号