首页 | 官方网站   微博 | 高级检索  
     


Effect of silica fume on cement hydration and temperature rise of concrete in tropical environment
Authors:M H Zhang  S Swaddiwudhipong  K Y J Tay  C T Tam
Affiliation:  a Department of Civil Engineering, National University of Singapore, Singapore
Abstract:Investigated herein is the effect of temperature on heat development in cement pastes and concretes with and without silica fume cured at relatively high temperatures often encountered in tropical environment. With an initial temperature of 30°C, adiabatic temperature rise of the concrete with 8% silica fume as cement replacement was similar to that of the control Portland cement concrete up to about 18 h. After 24 h, however, the temperature of the silica fume concrete was lower than that of the control concrete. Since the concrete with 8% silica fume had a higher 28-day compressive strength (72.5 MPa) than the control concrete without silica fume (59.2 MPa), the concrete with silica fume is likely to have a lower temperature rise as compared with the control concrete of equivalent 28-day strength by reducing cementitious materials content with the same water content. The extent of heat evolution in the silica fume pastes was generally greater at lower temperatures of 20-50°C, but less at 65°C than in the control paste. At the relatively high curing temperatures, the degree of cement hydration in the paste with silica fume was lower than that in the control cement paste at early ages. However, the pozzolanic reaction started even before 24 h after water was added.
Keywords:Ca(OH)2  Ca3SiO5  heat of hydration  silica fume  temperature rise  tropical environment
本文献已被 InformaWorld 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号