首页 | 官方网站   微博 | 高级检索  
     


RADIAL FLOW HOLLOW FIBERREVERSE OSMOSIS: EXPERIMENTS AND THEORY
Authors:VTNAYAK N KABADI  MAHENDRA R DOSHI  WILLIAM N GILL
Affiliation:Chemical Engineering Department , State University of New York at Buffalo , Amherst, 14260, New York
Abstract:The performance of a hollow fiber reverse osmosis system is studied both theoretically and experimentally. Experiments were carried out for applied pressure ranging from 200 to 400 psig, feed rates varying from 75 to 380 cc/sec and for feed concentrations up to 34,000 ppm of sodium chloride.

A mathematical model is proposed to predict productivity, ?, and product concentration, θp. The model involves solving membrane transport equations simultaneously with the hydrodynamic equations. The solubility-diffusion-imperfection, or pore diffusion model, is used to describe solute and solvent transport across the membrane. The axial gradients of shell side concentration, neglected in previous investigations, are taken into account. The differential equations are solved numerically by the 4th Order Runge-Kutta method.

Predicted values of ? and θp agree within 8% and 17% respectively, with experimental data over the entire range of operating conditions. However, membrane transport coefficients were found to be concentration dependent.

An approximate analysis shows that the concentration polarization is negligible in present day hollow fiber systems.

Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号