首页 | 官方网站   微博 | 高级检索  
     


Physical layer authentication for automotive cyber physical systems based on modified HB protocol
Authors:Ahmer Khan JADOON  Jing LI  Licheng WANG
Affiliation:1. State key laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China2. School of Computer Science, Guangzhou University, Guangzhou 510006, China
Abstract:Automotive cyber physical systems (CPSs) are ever more utilizing wireless technology for V2X communication as a potential way out for challenges regarding collision detection, wire strap up troubles and collision avoidance. However, security is constrained as a result of the energy and performance limitations of modern wireless systems. Accordingly, the need for efficient secret key generation and management mechanism for secured communication among computationally weak wireless devices has motivated the introduction of new authentication protocols. Recently, there has been a great interest in physical layer based secret key generation schemes by utilizing channel reciprocity. Consequently, it is observed that the sequence generated by two communicating parties contain mismatched bits which need to be reconciled by exchanging information over a public channel. This can be an immense security threat as it may let an adversary attain and recover segments of the key in known channel conditions. We proposed Hopper-Blum based physical layer (HB-PL) authentication scheme in which an enhanced physical layer key generation method integrates the Hopper-Blum (HB) authentication protocol. The information collected from the shared channel is used as secret keys for the HB protocol and the mismatched bits are used as the induced noise for learning parity with noise (LPN) problem. The proposed scheme aims to provide a way out for bit reconciliation process without leakage of information over a public channel. Moreover, HB protocol is computationally efficient and simple which helps to reduce the number of exchange messages during the authentication process. We have performed several experiments which show that our proposed design can generate secret keys with improved security strength and high performance in comparison to the current authentication techniques. Our scheme requires less than 55 exchange messages to achieve more than 95% of correct authentication.
Keywords:cyber physical systems  secret key generation  learning parity with noise  Hopper and Blum protocol  
点击此处可从《Frontiers of Computer Science》浏览原始摘要信息
点击此处可从《Frontiers of Computer Science》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号