首页 | 官方网站   微博 | 高级检索  
     


Electrospun poly(vinylidene fluoride-trifluoroethylene)/zinc oxide nanocomposite tissue engineering scaffolds with enhanced cell adhesion and blood vessel formation
Authors:Robin Augustine  Pan Dan  Alejandro Sosnik  Nandakumar Kalarikkal  Nguyen Tran  Brice Vincent  Sabu Thomas  Patrick Menu  Didier Rouxel
Affiliation:1.Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering,Technion-Israel Institute of Technology,Haifa,Israel;2.International and Inter University Centre for Nanoscience and Nanotechnology,Mahatma Gandhi University,Kottayam,India;3.Ingénierie Moléculaire et Physiopathologie Articulaire,UMR 7365 CNRS-Université de Lorraine,Vandoeuvre-lès Nancy,France;4.School of Pure and Applied Physics,Mahatma Gandhi University,Kottayam,India;5.School of Surgery, Faculty of Medicine,Université de Lorraine,Vandoeuvre-lès-Nancy,France;6.Institut Jean Lamour,UMR 7198 CNRS-Université de Lorraine,Vandoeuvre-lès-Nancy,France;7.School of Chemical Sciences,Mahatma Gandhi University,Kottayam,India
Abstract:Piezoelectric materials that generate electrical signals in response to mechanical strain can be used in tissue engineering to stimulate cell proliferation.Poly (vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)),a piezoelectric polymer,is widely used in biomaterial applications.We hypothesized that incorporation of zinc oxide (ZnO) nanoparticles into the P(VDF-TrFE) matrix could promote adhesion,migration,and proliferation of cells,as well as blood vessel formation (angiogenesis).In this study,we fabricated and comprehensively characterized a novel electrospun P(VDF-TrFE)/ZnO nanocomposite tissue engineering scaffold.We analyzed the morphological features of the polymeric matrix by scanning electron microscopy,and utilized Fourier transform infrared spectroscopy,X-ray diffraction,and differential scanning calorimetry to examine changes in the crystalline phases of the copolymer due to addition of the nanoparticles.We detected no or minimal adverse effects of the biomaterials with regard to blood compatibility in vitro,biocompatibility,and cytotoxicity,indicating that P(VDF-TrFE)/ZnO nanocomposite scaffolds are suitable for tissue engineering applications.Interestingly,human mesenchymal stem cells (hMSCs) and human umbilical vein endothelial cells cultured on the nanocomposite scaffolds exhibited higher cell viability,adhesion,and proliferation compared to cells cultured on tissue culture plates or neat P(VDF-TrFE) scaffolds.Nanocomposite scaffolds implanted into rats with or without hMSCs did not elicit immunological responses,as assessed by macroscopic analysis and histology.Importantly,nanocomposite scaffolds promoted angiogenesis,which was increased in scaffolds pre-seeded with hMSCs.Overall,our results highlight the potential of these novel P(VDF-TrFE)/ZnO nanocomposites for use in tissue engineering,due to their biocompatibility and ability to promote cell adhesion and angiogenesis.
Keywords:scaffolds  electrospinning  poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE))  ZnO  angiogenesis  cell adhesion  stem cells
本文献已被 万方数据 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号