首页 | 官方网站   微博 | 高级检索  
     

熔盐堆超临界二氧化碳布雷顿循环系统与热力学分析
引用本文:卢恒,赵恒,戴叶,陈兴伟,贾国斌,邹杨.熔盐堆超临界二氧化碳布雷顿循环系统与热力学分析[J].核动力工程,2022,43(2):32-39.
作者姓名:卢恒  赵恒  戴叶  陈兴伟  贾国斌  邹杨
作者单位:中国科学院上海应用物理研究所,上海,201800
摘    要:熔盐堆(MSR)能实现在线填料和后处理,出口温度较高,应配备一种与之出口温度相匹配的创新型循环方式,且可达到较高的循环效率。本文基于中国科学院上海应用物理研究所设计的小型模块化熔盐堆(smTMSR-400)设计超临界二氧化碳(SCO2)布雷顿循环系统,使用控制变量法分析了分流比、压缩机/透平效率、主压缩机出口温度、低温换热器换热温差/阻力对SCO2布雷顿循环系统的影响。分析结果表明:①存在最佳分流比使低温换热器两侧温差相等;②相较于压缩机效率,等幅度的透平效率提升可使系统循环效率和?效率更高;③主压缩机出口压力增大为系统带来正面影响,但循环效率/?效率与其斜率都逐渐降低;④换热器换热温差和流动阻力都为系统循环带来了可量化的负担: 换热温差每增加10 K,循环效率降低1.85%,?效率降低2.70%;流动阻力每增加1 MPa,循环效率降低6.58%,?效率降低10.22%。最后根据分析结果和系统?流变化设计了5种物理参考方案。 

关 键 词:熔盐堆(MSR)    超临界二氧化碳(SCO2    布雷顿    热力学分析
收稿时间:2021-02-02

MSR Supercritical Carbon Dioxide Brayton Cycle System and Thermodynamic Analysis
Affiliation:Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
Abstract:Molten salt reactor (MSR) can realize on-line packing and post-processing, and the outlet temperature is higher, so it shall be equipped with an innovative cycle mode that matches its outlet temperature, and can achieve higher cycle efficiency. In this paper, a supercritical carbon dioxide (SCO2) Brayton cycle system is designed based on the small modular molten salt reactor (smTMSR-400) designed by Shanghai Institute of Applied Physics, Chinese Academy of Sciences. The effects of split ratio, compressor/turbine efficiency, outlet temperature of main compressor and heat exchange temperature difference/resistance of low temperature heat exchanger on SCO2 Brayton cycle system are analyzed by using the control variable method. The analysis results show that: ①there is an optimal split ratio to make the temperature difference between the two sides of the low temperature heat exchanger equal; ②compared with the compressor efficiency, the equal-amplitude turbine efficiency improvement can make the system cycle efficiency and exergy efficiency higher; ③ the increase in the outlet pressure of the main compressor has a positive impact on the system, but the cycle efficiency/exergy efficiency and its slope gradually decrease; ④the heat exchange temperature difference and flow resistance of the heat exchanger bring quantifiable burden to the system cycle: for every 10 K increase in the heat exchange temperature difference, the cycle efficiency decreases by 1.85% and exergy efficiency decreases by 2.70%; When the flow resistance increases by 1 MPa, the cycle efficiency decreases by 6.58% and exergy efficiency decreases by 10.22%. At last ,this paper designs 5 physical reference schemes based on the analysis results and system exergy changes. 
Keywords:
点击此处可从《核动力工程》浏览原始摘要信息
点击此处可从《核动力工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号