首页 | 官方网站   微博 | 高级检索  
     

基于Mueller矩阵成像椭偏仪的纳米结构几何参数大面积测量
引用本文:陈修国,袁奎,杜卫超,陈军,江浩,张传维,刘世元.基于Mueller矩阵成像椭偏仪的纳米结构几何参数大面积测量[J].物理学报,2016,65(7):70703-070703.
作者姓名:陈修国  袁奎  杜卫超  陈军  江浩  张传维  刘世元
作者单位:1. 华中科技大学, 数字制造装备与技术国家重大实验室, 武汉 430074; 2. 武汉颐光科技有限公司, 武汉 430075
基金项目:国家自然科学基金(批准号: 51475191, 51405172)、国家重大科学仪器设备开发专项(批准号: 2011YQ160002)、中国博士后科学基金(批准号: 2014M560607, 2015T80791)、湖北省自然科学基金(批准号: 2015CFB278)和教育部长江学者与创新团队发展计划(批准号: IRT13017)资助的课题.
摘    要:为了实现有效的工艺监控, 在批量化纳米制造中对纳米结构的关键尺寸等几何参数进行快速、低成本、非破坏性的精确测量具有十分重要的意义. 光学散射仪目前已经发展成为批量化纳米制造中纳米结构几何参数在线测量的一种重要手段. 传统光学散射测量技术只能获得光斑照射区内待测参数的平均值, 而对小于光斑照射区内样品的微小变化难以准确分析. 此外, 由于其只能进行单点测试, 必须要移动样品台进行扫描才能获得大面积区域内待测参数的分布信息, 从而严重影响测试效率. 为此, 本文将传统光学散射测量技术与显微成像技术相结合, 提出利用Mueller矩阵成像椭偏仪实现纳米结构几何参数的大面积快速准确测量. Mueller矩阵成像椭偏仪具有传统Mueller矩阵椭偏仪测量信息全、光谱灵敏度高的优势, 同时又有显微成像技术高空间分辨率的优点, 有望为批量化纳米制造中纳米结构几何参数提供一种大面积、快速、低成本、非破坏性的精确测量新途径.

关 键 词:纳米结构  纳米测量  光学散射测量  Mueller矩阵成像椭偏仪
收稿时间:2015-10-14

Large-scale nanostructure metrology using Mueller matrix imaging ellipsometry
Chen Xiu-Guo,Yuan Kui,Du Wei-Chao,Chen Jun,Jiang Hao,Zhang Chuan-Wei,Liu Shi-Yuan.Large-scale nanostructure metrology using Mueller matrix imaging ellipsometry[J].Acta Physica Sinica,2016,65(7):70703-070703.
Authors:Chen Xiu-Guo  Yuan Kui  Du Wei-Chao  Chen Jun  Jiang Hao  Zhang Chuan-Wei  Liu Shi-Yuan
Affiliation:1. State Key Laboratory for Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; 2. Wuhan EOptics Technology Co. Ltd. , Wuhan 430075, China
Abstract:In order to achieve effective process control, the fast, inexpensive, nondestructive and accurate nanoscale feature measurements are extremely useful in high-volume nanomanufacturing. The optical scatterometry has currently become one of the important approaches for in-line metrology of geometrical parameters of nanostructures in high-volume nanomanufacturing due to its high throughput, low cost, and minimal sample damage. Conventional scatterometry techniques can only obtain the mean geometrical parameter values located in the illumination spot, but cannot acquire the microscopic variation of geometrical parameters less than the illumination region. In addition, conventional scatterometry techniques can only perform monospot test. Therefore, the sample stage must be scanned spot by spot in order to obtain the distribution of geometrical parameters in a large area. Consequently, the final test efficiency will be greatly reduced. Accordingly, in this paper, we combine conventional scatterometry with imaging techniques and adopt the Mueller matrix imaging ellipsometry (MMIE) for fast, large-scale and accurate nanostructure metrology. A spectroscopic Mueller matrix imaging ellipsometer is developed in our laboratory by substituting a complementary metal oxide semiconductor camera for the spectrometer in a previously developed dual rotating-compensator Mueller matrix ellipsometer and by placing a telecentric lens as an imaging lens in the polarization state analyzer arm of the ellipsometer. The light wavelengths in the developed imaging ellipsometer are scanned in a range of 400-700 nm by using a monochromator. The spectroscopic Mueller matrix imaging ellipsometer is then used for measuring a typical Si grating template used in nanoimprint lithography. The measurement results indicate that the developed instrument has a measurement accuracy of better than 0.05 for all the Mueller matrix elements in both the whole image and the whole spectral range. The three-dimensional microscopic maps of geometrical parameters of the Si grating template over a large area with pixel-sized lateral resolution are then reconstructed from the collected spectral imaging Mueller matrices by solving an inverse diffraction problem. The MMIE-measured results that are extracted from Mueller matrix spectra collected by a single pixel of the camera are in good agreement with those measured by a scanning electron microscope and the conventional Mueller matrix ellipsometer. The MMIE that combines the great power of conventional Mueller matrix ellipsometry with the high spatial resolution of optical microscopy is thus expected to be a powerful tool for large-scale nanostructure metrology in future high-volume nanomanufacturing.
Keywords:nanostructure  nanometrology  optical scatterometry  Mueller matrix imaging ellipsometry
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号