首页 | 官方网站   微博 | 高级检索  
     


Exact solutions for characterization of electro-elastically graded materials
Authors:Shailendra Joshi  Abhijit Mukherjee  Siegfried Schmauder  
Affiliation:

a Staatliche Materialprüfunganstalt, Universität of Stuttgart, Pfaffenwaldring 32, Stuttgart 70569, Germany

b Department of Civil Engineering, Indian Institute of Technology, Bombay, India

Abstract:The present paper deals with a class of functionally graded materials (FGM), called active FGM that has electro-elastically graded material phases. An active FGM system leads to minimization of stress concentration that arises due to mismatch in the electrical and elastic properties of the constituent phases. This work focuses on the characterization of the through thickness stresses of an active FGM subjected to electrical excitation. The structure is comprised of a substrate, an electro-elastically graded layer and an active layer. A formulation for exact solutions of the system based on Euler–Bernoulli theory is presented. Power-law variation of the composition of the two phases in the graded layer is considered. Performance of linearly gradient FGM for a range of stiffness and electrical property ratios of the active and substrate materials have been studied. It is observed that the electrical strain component and the compositional gradation significantly influence the stress characteristics of the active FGM.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号